Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { 0. } 4 x^{2}-(4 x-3 y)^{2} & \text { 11. } 16 a^{2}-(3 b+4 c)^{2} \\ \text { 3. } 4(a-3)^{2}-49(4 a-5) & \text { 14. } 16 k^{2}-4 \\ \text { 6. } \frac{1}{9} a^{2}-4 b^{2} & \text { 17. } \frac{1}{2} x^{2}-2\end{array} \)

Ask by Lee Hampton. in South Africa
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the factored forms of the given expressions: 1. \( 4x^{2} - (4x - 3y)^{2} = - (2x - 3y)(6x - 3y) \) 2. \( 16a^{2} - (3b + 4c)^{2} = (4a - 3b - 4c)(4a + 3b + 4c) \) 3. \( 4(a - 3)^{2} - 49(4a - 5) = 4a^2 - 220a + 281 \) (does not factor neatly) 4. \( 16k^{2} - 4 = 4(2k - 1)(2k + 1) \) 5. \( \frac{1}{9}a^{2} - 4b^{2} = \frac{1}{9}(a - 6b)(a + 6b) \) 6. \( \frac{1}{2}x^{2} - 2 = \frac{1}{2}(x - 2)(x + 2) \)

Solución

Certainly! Let's factor each of the given expressions. We'll use techniques such as the **difference of squares** and **factoring out common factors** where applicable. --- ### **0. \( 4x^{2} - (4x - 3y)^{2} \)** **Method:** Difference of Squares \[ \begin{aligned} 4x^{2} - (4x - 3y)^{2} &= (2x)^2 - (4x - 3y)^2 \\ &= [2x - (4x - 3y)][2x + (4x - 3y)] \quad \text{(Using } a^2 - b^2 = (a - b)(a + b)\text{)} \\ &= (-2x + 3y)(6x - 3y) \\ &= -1 \times (2x - 3y)(6x - 3y) \\ \end{aligned} \] **Factored Form:** \[ - (2x - 3y)(6x - 3y) \] --- ### **11. \( 16a^{2} - (3b + 4c)^{2} \)** **Method:** Difference of Squares \[ \begin{aligned} 16a^{2} - (3b + 4c)^{2} &= (4a)^2 - (3b + 4c)^2 \\ &= [4a - (3b + 4c)][4a + (3b + 4c)] \\ &= (4a - 3b - 4c)(4a + 3b + 4c) \end{aligned} \] **Factored Form:** \[ (4a - 3b - 4c)(4a + 3b + 4c) \] --- ### **3. \( 4(a - 3)^{2} - 49(4a - 5) \)** **Method:** Expand and Simplify First, expand each term: \[ \begin{aligned} 4(a - 3)^2 &= 4(a^2 - 6a + 9) = 4a^2 - 24a + 36 \\ 49(4a - 5) &= 196a - 245 \\ \end{aligned} \] Subtract the second expression from the first: \[ \begin{aligned} 4a^2 - 24a + 36 - (196a - 245) &= 4a^2 - 24a + 36 - 196a + 245 \\ &= 4a^2 - 220a + 281 \end{aligned} \] **Factored Form:** The quadratic \(4a^2 - 220a + 281\) does not factor neatly over the integers. However, it can be expressed using the quadratic formula or left in its simplified form: \[ 4a^2 - 220a + 281 \] --- ### **14. \( 16k^{2} - 4 \)** **Method:** Difference of Squares and Factoring Out Common Factors \[ \begin{aligned} 16k^2 - 4 &= 4(4k^2 - 1) \quad \text{(Factor out 4)} \\ &= 4[(2k)^2 - 1^2] \\ &= 4(2k - 1)(2k + 1) \quad \text{(Using } a^2 - b^2 = (a - b)(a + b)\text{)} \end{aligned} \] **Factored Form:** \[ 4(2k - 1)(2k + 1) \] --- ### **6. \( \frac{1}{9}a^{2} - 4b^{2} \)** **Method:** Difference of Squares \[ \begin{aligned} \frac{1}{9}a^2 - 4b^2 &= \left(\frac{a}{3}\right)^2 - (2b)^2 \\ &= \left(\frac{a}{3} - 2b\right)\left(\frac{a}{3} + 2b\right) \quad \text{(Using } a^2 - b^2 = (a - b)(a + b)\text{)} \end{aligned} \] **Factored Form:** \[ \left(\frac{a}{3} - 2b\right)\left(\frac{a}{3} + 2b\right) \] Alternatively, to eliminate the fraction: \[ \frac{1}{9}(a - 6b)(a + 6b) \] --- ### **17. \( \frac{1}{2}x^{2} - 2 \)** **Method:** Difference of Squares and Factoring Out Constants First, factor out the constant \(\frac{1}{2}\): \[ \begin{aligned} \frac{1}{2}x^2 - 2 &= \frac{1}{2}(x^2 - 4) \\ &= \frac{1}{2}(x - 2)(x + 2) \quad \text{(Using } a^2 - b^2 = (a - b)(a + b)\text{)} \end{aligned} \] **Factored Form:** \[ \frac{1}{2}(x - 2)(x + 2) \] Alternatively, expressing as a difference of squares directly: \[ \frac{1}{2}x^2 - 2 = \left(\frac{x}{\sqrt{2}}\right)^2 - (\sqrt{2})^2 = \left(\frac{x}{\sqrt{2}} - \sqrt{2}\right)\left(\frac{x}{\sqrt{2}} + \sqrt{2}\right) \] --- If you have specific questions about any of these factorizations or need further assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To get a better grip on these algebraic expressions, let’s consider the historical journey of algebra! Ancient civilizations like the Babylonians and Greeks laid down the groundwork, but it was al-Khwarizmi in the 9th century who truly revolutionized the field with his systematic approach to solving equations. His methods formed the bedrock of algebra, which today helps us simplify complex expressions like the ones you've listed. Now, if you're looking to tackle these problems effectively, here's a common pitfall: forgetting to check for factorizable patterns. For example, expressions like \(a^2 - b^2\) can be cleverly simplified using the difference of squares. Always remember to look for patterns such as perfect squares and factoring out common terms to make the simplification process smoother and quicker!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad