Responder
Here are the factored forms of the given expressions:
1. \( 4x^{2} - (4x - 3y)^{2} = - (2x - 3y)(6x - 3y) \)
2. \( 16a^{2} - (3b + 4c)^{2} = (4a - 3b - 4c)(4a + 3b + 4c) \)
3. \( 4(a - 3)^{2} - 49(4a - 5) = 4a^2 - 220a + 281 \) (does not factor neatly)
4. \( 16k^{2} - 4 = 4(2k - 1)(2k + 1) \)
5. \( \frac{1}{9}a^{2} - 4b^{2} = \frac{1}{9}(a - 6b)(a + 6b) \)
6. \( \frac{1}{2}x^{2} - 2 = \frac{1}{2}(x - 2)(x + 2) \)
Solución
Certainly! Let's factor each of the given expressions. We'll use techniques such as the **difference of squares** and **factoring out common factors** where applicable.
---
### **0. \( 4x^{2} - (4x - 3y)^{2} \)**
**Method:** Difference of Squares
\[
\begin{aligned}
4x^{2} - (4x - 3y)^{2} &= (2x)^2 - (4x - 3y)^2 \\
&= [2x - (4x - 3y)][2x + (4x - 3y)] \quad \text{(Using } a^2 - b^2 = (a - b)(a + b)\text{)} \\
&= (-2x + 3y)(6x - 3y) \\
&= -1 \times (2x - 3y)(6x - 3y) \\
\end{aligned}
\]
**Factored Form:**
\[
- (2x - 3y)(6x - 3y)
\]
---
### **11. \( 16a^{2} - (3b + 4c)^{2} \)**
**Method:** Difference of Squares
\[
\begin{aligned}
16a^{2} - (3b + 4c)^{2} &= (4a)^2 - (3b + 4c)^2 \\
&= [4a - (3b + 4c)][4a + (3b + 4c)] \\
&= (4a - 3b - 4c)(4a + 3b + 4c)
\end{aligned}
\]
**Factored Form:**
\[
(4a - 3b - 4c)(4a + 3b + 4c)
\]
---
### **3. \( 4(a - 3)^{2} - 49(4a - 5) \)**
**Method:** Expand and Simplify
First, expand each term:
\[
\begin{aligned}
4(a - 3)^2 &= 4(a^2 - 6a + 9) = 4a^2 - 24a + 36 \\
49(4a - 5) &= 196a - 245 \\
\end{aligned}
\]
Subtract the second expression from the first:
\[
\begin{aligned}
4a^2 - 24a + 36 - (196a - 245) &= 4a^2 - 24a + 36 - 196a + 245 \\
&= 4a^2 - 220a + 281
\end{aligned}
\]
**Factored Form:**
The quadratic \(4a^2 - 220a + 281\) does not factor neatly over the integers. However, it can be expressed using the quadratic formula or left in its simplified form:
\[
4a^2 - 220a + 281
\]
---
### **14. \( 16k^{2} - 4 \)**
**Method:** Difference of Squares and Factoring Out Common Factors
\[
\begin{aligned}
16k^2 - 4 &= 4(4k^2 - 1) \quad \text{(Factor out 4)} \\
&= 4[(2k)^2 - 1^2] \\
&= 4(2k - 1)(2k + 1) \quad \text{(Using } a^2 - b^2 = (a - b)(a + b)\text{)}
\end{aligned}
\]
**Factored Form:**
\[
4(2k - 1)(2k + 1)
\]
---
### **6. \( \frac{1}{9}a^{2} - 4b^{2} \)**
**Method:** Difference of Squares
\[
\begin{aligned}
\frac{1}{9}a^2 - 4b^2 &= \left(\frac{a}{3}\right)^2 - (2b)^2 \\
&= \left(\frac{a}{3} - 2b\right)\left(\frac{a}{3} + 2b\right) \quad \text{(Using } a^2 - b^2 = (a - b)(a + b)\text{)}
\end{aligned}
\]
**Factored Form:**
\[
\left(\frac{a}{3} - 2b\right)\left(\frac{a}{3} + 2b\right)
\]
Alternatively, to eliminate the fraction:
\[
\frac{1}{9}(a - 6b)(a + 6b)
\]
---
### **17. \( \frac{1}{2}x^{2} - 2 \)**
**Method:** Difference of Squares and Factoring Out Constants
First, factor out the constant \(\frac{1}{2}\):
\[
\begin{aligned}
\frac{1}{2}x^2 - 2 &= \frac{1}{2}(x^2 - 4) \\
&= \frac{1}{2}(x - 2)(x + 2) \quad \text{(Using } a^2 - b^2 = (a - b)(a + b)\text{)}
\end{aligned}
\]
**Factored Form:**
\[
\frac{1}{2}(x - 2)(x + 2)
\]
Alternatively, expressing as a difference of squares directly:
\[
\frac{1}{2}x^2 - 2 = \left(\frac{x}{\sqrt{2}}\right)^2 - (\sqrt{2})^2 = \left(\frac{x}{\sqrt{2}} - \sqrt{2}\right)\left(\frac{x}{\sqrt{2}} + \sqrt{2}\right)
\]
---
If you have specific questions about any of these factorizations or need further assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución