Pregunta
upstudy study bank question image url

ID: c22b5f25 In the \( x y \)-plane, the points \( (-2,3) \) and \( (4,-5) \) lie on the graph of which of the following linear functions? A. \( f(x)=x+5 \) B. \( f(x)=\frac{1}{2} x+4 \) C. \( f(x)=-\frac{4}{3} x+\frac{1}{3} \) D. \( f(x)=-\frac{3}{2} x+1 \)

Ask by Hilton Martinez. in the United States
Feb 06,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct linear function is \( f(x) = -\frac{4}{3}x + \frac{1}{3} \).

Solución

To determine which linear function passes through the points \((-2, 3)\) and \((4, -5)\), let's follow these steps: 1. **Find the Slope (m) of the Line:** The slope \( m \) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is calculated as: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in the given points: \[ m = \frac{-5 - 3}{4 - (-2)} = \frac{-8}{6} = -\frac{4}{3} \] 2. **Determine the Y-Intercept (b):** Using the slope-intercept form \( y = mx + b \) and one of the points, say \((-2, 3)\): \[ 3 = -\frac{4}{3}(-2) + b \\ 3 = \frac{8}{3} + b \\ b = 3 - \frac{8}{3} = \frac{1}{3} \] 3. **Formulate the Equation of the Line:** The equation of the line is: \[ y = -\frac{4}{3}x + \frac{1}{3} \] 4. **Compare with the Given Options:** Let's match this equation with the provided options: - **A.** \( f(x) = x + 5 \) ⟹ Slope = 1 (Not matching) - **B.** \( f(x) = \frac{1}{2}x + 4 \) ⟹ Slope = \(\frac{1}{2}\) (Not matching) - **C.** \( f(x) = -\frac{4}{3}x + \frac{1}{3} \) ⟹ **Matches exactly** - **D.** \( f(x) = -\frac{3}{2}x + 1 \) ⟹ Slope = \(-\frac{3}{2}\) (Not matching) **Answer:** **C. \( f(x)=-\frac{4}{3} x+\frac{1}{3} \)**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine which linear function goes through the points \((-2,3)\) and \((4,-5)\), we first find the slope using the formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \), which gives us \( m = \frac{-5 - 3}{4 - (-2)} = \frac{-8}{6} = -\frac{4}{3} \). Next, we use the point-slope form \( y - y_1 = m(x - x_1) \) to derive the linear equation. Plugging in one of the points, for instance, \((-2, 3)\), we have: \[ y - 3 = -\frac{4}{3}(x + 2) \] This simplifies to: \[ y = -\frac{4}{3}x + \frac{1}{3} \] Now, if we look at the choices, we find that the answer corresponds to option C, which is \( f(x) = -\frac{4}{3} x + \frac{1}{3} \). --- The concept of slopes and linear functions is not just a theoretical aspect; it plays a significant role in various real-world situations, such as in economics for predicting costs, or in construction when determining the gradient of ramps. Understanding these concepts can help streamline not just calculations but also foster intuitive problem-solving skills in practical applications. Also, one common mistake students make is overlooking the intercept, forgetting to verify if their derived equation’s y-intercept matches the one calculated. Always double-check your calculations by substituting the original points back into the found equation to confirm they satisfy the linear function!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad