Finding the time given an exponential function with base e that... The number of bacteria \( P(h) \) in a certain population increases according to the following function, where time \( h \) is measured in hours. \[ P(h)=1700 e^{0.19 h} \] How many hours will it take for the number of bacteria to reach 2400 ? Round your answer to the nearest tenth, and do not round any intermediate computations. \( \square \) hours
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the time \( h \) when the population of bacteria \( P(h) \) reaches 2400, we need to set up the equation: \[ 2400 = 1700 e^{0.19 h} \] First, divide both sides by 1700: \[ \frac{2400}{1700} = e^{0.19 h} \] Simplifying the left side gives: \[ \frac{24}{17} = e^{0.19 h} \] Next, take the natural logarithm of both sides: \[ \ln\left(\frac{24}{17}\right) = 0.19 h \] Now, isolate \( h \): \[ h = \frac{\ln\left(\frac{24}{17}\right)}{0.19} \] Using a calculator to compute \( \ln\left(\frac{24}{17}\right) \approx 0.2007 \): \[ h \approx \frac{0.2007}{0.19} \approx 1.057 \] Thus, rounding to the nearest tenth, it will take approximately \( 1.1 \) hours for the bacteria population to reach 2400. In summary, the answer is: \( 1.1 \) hours
