Pregunta
upstudy study bank question image url

A construction worker tosses a brick from a tall building. The brick's height (in meters above the ground) \( t \) seconds after being thrown is modeled by \[ h(t)=-5 t^{2}+20 t+105 \] Suppose we want to know the height of the brick above the ground at its highest point. 1) Rewrite the function in a different form (factored or vertex) where the answer appears as a number in the equation. \[ h(t)= \] \( \square \) 2) At its highest point, how far above the ground was the brick? \( \square \) meters

Ask by Fernandez Mckenzie. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1) \( h(t) = -5(t - 2)^2 + 125 \) 2) The brick reaches a maximum height of 125 meters above the ground.

Solución

We start with the given function:   h(t) = –5t² + 20t + 105 Step 1: Rewrite the function in vertex form. To do this, we complete the square. 1. Factor out the coefficient of t² from the t terms:   h(t) = –5(t² – 4t) + 105 2. Complete the square for the expression in parentheses:   Take half of –4 (which is –2), square it (getting 4), and add and subtract 4 inside the parentheses.   h(t) = –5[(t² – 4t + 4) – 4] + 105 3. Rewrite the quadratic as a perfect square:   h(t) = –5[(t – 2)² – 4] + 105 4. Distribute –5:   h(t) = –5(t – 2)² + 20 + 105 5. Combine the constants:   h(t) = –5(t – 2)² + 125 Thus, the rewritten form is:   h(t) = –5(t – 2)² + 125 Step 2: Determine the maximum height. In the vertex form, the vertex is (2, 125), where t = 2 seconds and the maximum height is 125 meters. Answers: 1) h(t) = –5(t – 2)² + 125 2) The brick reaches a maximum height of 125 meters above the ground.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the height of the brick at its highest point, we can convert the quadratic function into vertex form. The vertex form of a quadratic function is given by \( h(t) = a(t - h)^2 + k \), where \((h, k)\) is the vertex, or the highest point in this case. 1) We start with the function: \[ h(t) = -5 t^{2} + 20 t + 105 \] We can complete the square: \[ h(t) = -5(t^{2} - 4t) + 105 \] \[ h(t) = -5(t^2 - 4t + 4 - 4) + 105 \] \[ h(t) = -5((t - 2)^2 - 4) + 105 \] \[ h(t) = -5(t - 2)^2 + 20 + 105 \] \[ h(t) = -5(t - 2)^2 + 125 \] So, in vertex form: \[ h(t) = -5(t - 2)^2 + 125 \] 2) The highest point occurs when \( t = 2 \), and substituting \( t = 2 \) into the function gives: \[ h(2) = -5(2 - 2)^2 + 125 = 125 \] Therefore, at its highest point, the brick was: \( 125 \) meters above the ground.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad