Pregunta
upstudy study bank question image url

Mathspace-IM1B-LL-Task 4 1 3 4 8 eas is 2. A sample contains 400 grams of iodine-131, which has a half-life of 8 days. 2a) Write an expression for \( A \) to represent the amount of iodine-131 remaining in the sample after \( t \) days. \[ A=400(0.5)^{\frac{1}{8}} \] \[ \ldots \] 2b Find how much of the isotope would be left after 8 weeks. Give your answer correct to two decimal places. \[ A= \] \( \square \) Fnter your next step here grams

Ask by Barker Bowen. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 8 weeks, approximately 3.12 grams of iodine-131 remain in the sample.

Solución

To find the amount of iodine-131 remaining in the sample after \( t \) days, we can use the formula for radioactive decay: \[ A = A_0 \times (0.5)^{\frac{t}{T}} \] where: - \( A \) is the amount of iodine-131 remaining after \( t \) days, - \( A_0 \) is the initial amount of iodine-131 (400 grams in this case), - \( t \) is the time in days, - \( T \) is the half-life of iodine-131 (8 days in this case). Given that the half-life of iodine-131 is 8 days, we can substitute the values into the formula: \[ A = 400 \times (0.5)^{\frac{t}{8}} \] Now, we need to find how much of the isotope would be left after 8 weeks. Since there are 7 days in a week, 8 weeks is equal to 56 days. We can substitute \( t = 56 \) into the formula to find the amount of iodine-131 remaining after 8 weeks: \[ A = 400 \times (0.5)^{\frac{56}{8}} \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(400\times 0.5^{\frac{56}{8}}\) - step1: Divide the terms: \(400\times 0.5^{7}\) - step2: Convert the expressions: \(400\left(\frac{1}{2}\right)^{7}\) - step3: Evaluate the power: \(400\times \frac{1}{128}\) - step4: Multiply: \(\frac{25}{8}\) The amount of iodine-131 remaining after 8 weeks is approximately 3.125 grams.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The amount of iodine-131 remaining after a certain number of days can be represented using the formula \( A = A_0(0.5)^{\frac{t}{h}} \), where \( A_0 \) is the initial amount, \( h \) is the half-life, and \( t \) is the time elapsed. For your case, it becomes \( A = 400(0.5)^{\frac{t}{8}} \). Just plug in your values, and you’re golden! Now, for 8 weeks, which is 56 days, you simply replace \( t \) with 56 in your equation: \[ A = 400(0.5)^{\frac{56}{8}} = 400(0.5)^7 \] Calculating that gives you \( A \approx 3.13 \) grams. So, after 8 weeks, about 3.13 grams of iodine-131 would remain!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad