Responder
To solve for \( x \) in each equation:
1. **7.2.1**:
- If \( x \geq 0 \): \( x = \frac{m}{1 + a} \)
- If \( x < 0 \): \( x = \frac{m}{a - 1} \)
2. **7.2.2**: \( x = y - \frac{Q}{m \cdot c} \)
3. **7.2.3**: \( x = \frac{m^2 n^2}{m^2 - n^2} \)
Solución
Below are the steps to “solve for x” (i.e. change the subject of the formula to x) for each formula. Note that in the first formula the square root of x² is |x|, so there are two cases unless you assume x is nonnegative.
──────────────────────────────
7.2.1 m = √(x²) + a·x
Since √(x²) = |x|, you have two cases:
• Case 1. Assume x ≥ 0 so that |x| = x:
m = x + a·x = (1 + a)x.
Assuming 1 + a ≠ 0, solve for x:
x = m/(1 + a).
• Case 2. Assume x < 0 so that |x| = –x:
m = (–x) + a·x = (a – 1)x.
Assuming a – 1 ≠ 0, solve for x:
x = m/(a – 1).
If additional context indicates x is nonnegative, then x = m/(1 + a) is the answer.
──────────────────────────────
7.2.2 Q = m·c·(y – x)
Solve for x by isolating the (y – x) term:
Divide both sides by m·c (assuming m·c ≠ 0):
y – x = Q/(m·c)
Subtract Q/(m·c) from y:
x = y – Q/(m·c)
──────────────────────────────
7.2.3 m(m·x – n) – n(n·x – m) = m²n²
Step 1. Expand the left‐hand side:
m(m·x – n) = m²x – m·n,
n(n·x – m) = n²x – n·m.
So the equation becomes:
(m²x – m·n) – (n²x – n·m) = m²n²
Step 2. Distribute the minus sign:
m²x – m·n – n²x + n·m = m²n²
Notice that –m·n + n·m = 0, so the x–terms combine:
(m² – n²)x = m²n²
Step 3. Solve for x (provided m² – n² ≠ 0):
x = (m²n²) / (m² – n²)
──────────────────────────────
Summary of Answers:
7.2.1 • For x ≥ 0: x = m/(1 + a)
• For x < 0: x = m/(a – 1)
7.2.2 x = y – Q/(m·c)
7.2.3 x = m²n² / (m² – n²)
These are the required forms with x as the subject of each formula.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución