Pregunta
upstudy study bank question image url

Story Problems: Sketch a picture, and show all work. Round all angles to the nearest whole degree and all sides to the nearest tenth. 7. A telephone pole 15 meters high casts a shadow 10 meters long. Find the angle of elevation of the sun.

Ask by Hamilton Bradley. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The angle of elevation of the sun is approximately 56 degrees.

Solución

To find the angle of elevation of the sun, we can use the concept of trigonometry. Given: - Height of the telephone pole = 15 meters - Length of the shadow = 10 meters We can use the tangent function to find the angle of elevation. The tangent of an angle in a right triangle is the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle. Let's denote the angle of elevation as θ (theta). Using the tangent function: \[ \tan(\theta) = \frac{\text{opposite side}}{\text{adjacent side}} \] In this case, the opposite side is the height of the telephone pole (15 meters) and the adjacent side is the length of the shadow (10 meters). \[ \tan(\theta) = \frac{15}{10} \] Now, we can find the angle of elevation by taking the inverse tangent (arctangent) of both sides: \[ \theta = \arctan\left(\frac{15}{10}\right) \] Let's calculate the angle of elevation using the arctangent function. Calculate the value by following steps: - step0: Calculate: \(\arctan\left(\frac{15}{10}\right)\) - step1: Reduce the fraction: \(\arctan\left(\frac{3}{2}\right)\) The angle of elevation of the sun is approximately 0.982794 radians or 56.3 degrees (rounded to the nearest whole degree).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this story problem, you could start by sketching a right triangle where the telephone pole represents the vertical leg (15 meters high) and the shadow represents the horizontal leg (10 meters long). Using the tangent function, which relates the angle of elevation (θ) to the opposite and adjacent sides, you can express it as tan(θ) = opposite/adjacent = 15/10. Thus, θ can be found by calculating the arctangent of 1.5. When you do the math, you’ll find the angle of elevation to be approximately 56 degrees after rounding! For a more visual understanding, it might help to remember that these types of problems commonly utilize triangles. When sketching, ensure you label your sides and angles clearly. Also, be cautious with your calculator settings to avoid mistakes—make sure it’s in degree mode when finding the arctangent, as this will give you the angle measurement you need.

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad