Pregunta
upstudy study bank question image url

(2) Hence, prove by means of factorisation, that \( x(x-3)^{2}-3(3-x)^{2}=(x-3)^{3} \)

Ask by Delgado Chen. in South Africa
Jan 29,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After factoring, both terms share \((x - 3)^2\). Therefore, \[ x(x - 3)^2 - 3(3 - x)^2 = (x - 3)^3. \]

Solución

To prove the identity \[ x(x-3)^{2} - 3(3-x)^{2} = (x-3)^{3}, \] let's proceed step-by-step using factorization. ### Step 1: Recognize a Common Factor Notice that both terms on the left-hand side contain \((x-3)^{2}\). Let's factor this common term out: \[ x(x-3)^{2} - 3(3-x)^{2} = (x-3)^{2} \cdot x - 3(3-x)^{2}. \] ### Step 2: Simplify \((3-x)^{2}\) Observe that \((3-x)^{2}\) is the same as \((x-3)^{2}\) because squaring eliminates the sign: \[ (3-x)^{2} = (x-3)^{2}. \] Substitute this back into the equation: \[ (x-3)^{2} \cdot x - 3(x-3)^{2}. \] ### Step 3: Factor Out \((x-3)^{2}\) Now, factor \((x-3)^{2}\) out of both terms: \[ (x-3)^{2}(x - 3). \] ### Step 4: Combine the Factors Multiply the terms inside the parentheses: \[ (x-3)^{2} \cdot (x - 3) = (x-3)^{3}. \] ### Conclusion Thus, we have shown that: \[ x(x-3)^{2} - 3(3-x)^{2} = (x-3)^{3}. \] **Final Answer:** After factoring, both terms share (x – 3)². Thus, x(x−3)² − 3(3−x)² = (x−3)²(x − 3) = (x−3)³.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To prove the equation \( x(x-3)^{2}-3(3-x)^{2}=(x-3)^{3} \) by means of factorization, let’s start with the left side. First, we can rewrite \( (3-x)^2 \) as \( (-(x-3))^2 = (x-3)^2 \): \[ -3(3-x)^{2} = -3((x-3)^2) = -3(x-3)^2. \] So the left side becomes: \[ x(x-3)^{2} - 3(x-3)^{2} = (x-3)^{2}(x - 3) = (x-3)^{2}(x - 3). \] Now we can factor out \( (x-3)^{2} \): \[ = (x-3)^{2}(x - 3) = (x-3)^{3}. \] Thus, we have shown that: \[ x(x-3)^{2}-3(3-x)^{2} = (x-3)^{3}, \] which completes the proof. Now, let’s summarize the steps: **Step 1**: Rewrite \( (3-x)^2 \) as \( -(x-3)^2 \). **Step 2**: Factor out the common term \( (x - 3)^2 \). **Step 3**: Recognize that we end up with \( (x-3)^3 \) on both sides of the equation, confirming the original statement is true!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad