3. Express the following decimal fractions as a sum of fractions with the denominator as a power of 10. \( \begin{array}{llll}\text { a) } 0,23 & \text { b) } 1,303 & \text { ac ) } 4,121 & \text {-d) } 2,3103\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
For \( 0,23 \), you can express it as \( \frac{23}{100} \) since there are two digits after the decimal point. So, \( 0,23 = \frac{20}{100} + \frac{3}{100} \). For \( 1,303 \), this is the same as saying \( 1 + 0,303 \), which can be expressed as \( 1 + \frac{303}{1000} \) because there are three decimal places: \( 1,303 = 1 + \frac{300}{1000} + \frac{3}{1000} \). For \( 4,121 \), similarly, this can be broken down into \( 4 + 0,121 \) yielding \( 4 + \frac{121}{1000} \). Lastly, \( 2,3103 \) can be expressed as \( 2 + 0,3103 \) or \( 2 + \frac{3103}{10000} \), with four decimal places indicating a denominator of \( 10^4 \). So, the full expressions are: - a) \( 0,23 = \frac{20}{100} + \frac{3}{100} \) - b) \( 1,303 = 1 + \frac{303}{1000} \) - c) \( 4,121 = 4 + \frac{121}{1000} \) - d) \( 2,3103 = 2 + \frac{3103}{10000} \)
