9) When a positive number is cubed the answer is Before you can root something, you first need to make sure that there is under the root sign. Find the answers to these questions without using your calculator: \( \begin{array}{lll}\text { a) } \sqrt[3]{100+25} & \text { b) } \sqrt{9}+\sqrt{64} & \text { c) } \\ \begin{array}{lll}\text { d) } \sqrt[3]{-216} \\ \text { a) } 20^{2}+(-6)^{3} & \text { e) } \sqrt[3]{9+16} & \text { f) } \sqrt{36}-2^{3}\end{array} \\ \text { (1) })^{3}+\sqrt{81} & \text { h) }(-5)^{2}+(4)^{3} & \text { i) } \sqrt[3]{216}-(-5)^{3}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Cubing a positive number is a fun mathematical adventure! When you take a number and raise it to the power of three, you're essentially multiplying that number by itself two more times. So, if you take a number like 2 and cube it, \( 2^3 = 2 \times 2 \times 2 = 8 \). No matter how high you go, a positive number raised to the third power will always remain positive! Now, let's get to the root of the problem! To solve your questions, remember that the square root and cube root are fancy ways of asking, "What number can I multiply to get this value?" For example, \( \sqrt{9} = 3\) because \(3 \times 3 = 9\), and \( \sqrt[3]{-216} = -6\) because multiplying -6 by itself three times gives you -216. Just be sure to keep your signs in check; roots can behave differently with positive and negative numbers!
