f \( y \) varies directly with \( x \) and \( y=6 \) when \( x=3 \), find \( y \) when \( x=2 \). Write and solve a direct variation equation to find the answer. \( y=\square \) Submit
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the direct variation equation, start by expressing the relationship between \( y \) and \( x \) as \( y = kx \), where \( k \) is the constant of variation. Given \( y = 6 \) when \( x = 3 \), you can calculate \( k \) by rearranging the equation: \[ k = \frac{y}{x} = \frac{6}{3} = 2. \] Now, your direct variation equation is \( y = 2x \). To find \( y \) when \( x = 2 \), substitute \( 2 \) for \( x \): \[ y = 2(2) = 4. \] So, \( y = 4 \). \( y = 4 \)
