Use the long division method to find the result when \( 3 x^{3}+16 x^{2}+30 x+21 \) is divided by \( 3 x+7 \). Answer Altempt t out of 2
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To use long division for the polynomial \( 3x^3 + 16x^2 + 30x + 21 \) divided by \( 3x + 7 \), we start by setting it up like traditional long division. 1. **Divide the leading terms:** \( \frac{3x^3}{3x} = x^2 \). 2. **Multiply:** \( x^2(3x + 7) = 3x^3 + 7x^2 \). 3. **Subtract:** \( (3x^3 + 16x^2 + 30x + 21) - (3x^3 + 7x^2) = 9x^2 + 30x + 21 \). 4. **Bring down:** Now we divide \( 9x^2 \) by \( 3x \), which gives us \( 3x \). 5. **Multiply again:** \( 3x(3x + 7) = 9x^2 + 21x \). 6. **Subtract:** \( (9x^2 + 30x + 21) - (9x^2 + 21x) = 9x + 21 \). 7. **Repeat:** Now, divide \( 9x \) by \( 3x \), giving us 3. 8. **Multiply:** \( 3(3x + 7) = 9x + 21 \). 9. **Final subtraction:** \( (9x + 21) - (9x + 21) = 0 \). Thus, the quotient is \( x^2 + 3x + 3 \) with a remainder of 0. So, \( \frac{3x^3 + 16x^2 + 30x + 21}{3x + 7} = x^2 + 3x + 3 \).
