Pregunta
upstudy study bank question image url

2. Use de Moivre's Theorem to solve each of these equations. Plot your solutions on the complex plane. \( \begin{array}{ll}\text { (i) } z^{2}=4 i & \text { (v) } z^{3}=8\end{array} \)

Ask by Mcguire Barker. in Ireland
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solutions for the equations using de Moivre's Theorem: **(i) \( z^{2} = 4i \)** - \( z = \sqrt{2} + i\sqrt{2} \) - \( z = -\sqrt{2} - i\sqrt{2} \) **(v) \( z^{3} = 8 \)** - \( z = 2 \) - \( z = -1 + i\sqrt{3} \) - \( z = -1 - i\sqrt{3} \) These solutions can be plotted on the complex plane as described.

Solución

We wish to solve the equations using de Moivre’s Theorem and then plot the solutions on the complex plane. ───────────────────────────── Problem (i): Solve z² = 4i Step 1. Write the right‐hand side in polar form. The complex number 4i can be written as:   4i = 4 (cos(π/2) + i sin(π/2)) = 4 cis(π/2). Step 2. Let z = r cis(θ) and write the equation using de Moivre’s Theorem. Since   z² = (r cis(θ))² = r² cis(2θ), the equation becomes:   r² cis(2θ) = 4 cis(π/2). Step 3. Equate the moduli and the angles. a) Equate the moduli:   r² = 4 ⇒ r = 2  (since r ≥ 0) b) Equate the angles:   2θ = π/2 + 2πk  with k an integer. Thus:   θ = π/4 + πk     (for any integer k) Step 4. Write the solutions. Since z depends on k modulo 2 (because adding 2π in the exponent gives the same number), we get two distinct solutions:  For k = 0:   θ = π/4  ⇒  z = 2 cis(π/4) = 2 (cos(π/4) + i sin(π/4)) = 2 (√2/2 + i √2/2) = √2 + i √2.  For k = 1:   θ = π/4 + π = 5π/4  ⇒  z = 2 cis(5π/4) = 2 (cos(5π/4) + i sin(5π/4)) = 2 (–√2/2 – i √2/2) = –√2 – i √2. ───────────────────────────── Problem (v): Solve z³ = 8 Step 1. Write the right‐hand side in polar form. The number 8 is real and positive, so it can be written as:   8 = 8 cis(0). Step 2. Let z = r cis(θ) and apply de Moivre’s Theorem. We have   z³ = (r cis(θ))³ = r³ cis(3θ) = 8 cis(0). Step 3. Equate the moduli and the angles. a) Modulus equation:   r³ = 8 ⇒  r = 2. b) Angle equation:   3θ = 0 + 2πk  ⇒  θ = 2πk/3     (for any integer k) Step 4. Write the three distinct solutions. Since the cube roots repeat every 3 values, choose k = 0, 1, 2: For k = 0:   θ = 0  ⇒  z = 2 cis(0) = 2 (cos 0 + i sin 0) = 2. For k = 1:   θ = 2π/3  ⇒  z = 2 cis(2π/3) = 2 (cos(2π/3) + i sin(2π/3)) = 2 (–1/2 + i √3/2) = –1 + i√3. For k = 2:   θ = 4π/3  ⇒  z = 2 cis(4π/3) = 2 (cos(4π/3) + i sin(4π/3)) = 2 (–1/2 – i √3/2) = –1 – i√3. ───────────────────────────── Plotting the Solutions on the Complex Plane For (i) z² = 4i: • The first solution z = √2 + i √2 is located in the first quadrant, at the point (√2, √2). • The second solution z = –√2 – i √2 is located in the third quadrant, at the point (–√2, –√2). For (v) z³ = 8: • z = 2 lies on the positive real axis at (2, 0). • z = –1 + i√3 lies in the second quadrant at (–1, √3). • z = –1 – i√3 lies in the third quadrant at (–1, –√3). ───────────────────────────── Summary of Answers (i) z² = 4i has two solutions:   z = 2 cis(π/4) = √2 + i√2   and  z = 2 cis(5π/4) = –√2 – i√2. (v) z³ = 8 has three solutions:   z = 2 cis(0) = 2,   z = 2 cis(2π/3) = –1 + i√3,   z = 2 cis(4π/3) = –1 – i√3. You can now plot these points on the complex plane to see their geometric distribution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve \( z^2 = 4i \) using de Moivre's Theorem, we first express \( 4i \) in polar form. The modulus \( r = 4 \) and the argument \( \theta = \frac{\pi}{2} \) (since it's on the positive imaginary axis). Write it as \( 4(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})) \). We find that \( z = r^{1/2}(\cos(\frac{\theta + 2k\pi}{2}) + i\sin(\frac{\theta + 2k\pi}{2})) \) for \( k = 0, 1 \). Thus, the two solutions are \( z_1 = \sqrt{4}\left(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})\right) = 2(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}) = \sqrt{2} + i\sqrt{2} \) and \( z_2 = 2(\cos(\frac{5\pi}{4}) + i\sin(\frac{5\pi}{4})) = -\sqrt{2} - i\sqrt{2} \). For \( z^3 = 8 \), we express \( 8 \) in polar form as \( 8(\cos(0) + i\sin(0)) \). Here, \( r = 8 \) and \( \theta = 0 \). Applying de Moivre's theorem again, we have \( z = r^{1/3}(\cos(\frac{\theta + 2k\pi}{3}) + i\sin(\frac{\theta + 2k\pi}{3})) \) for \( k = 0, 1, 2 \). The solutions are \( z_1 = 2(\cos(0) + i\sin(0)) = 2 \), \( z_2 = 2(\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})) = -1 + i\sqrt{3} \), and \( z_3 = 2(\cos(\frac{4\pi}{3}) + i\sin(\frac{4\pi}{3})) = -1 - i\sqrt{3} \). Plotting these solutions on the complex plane gives points that represent the vertices of geometric shapes, illustrating the elegant connections in the complex number system!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad