Pregunta
upstudy study bank question image url

2. Dirk draws quadrilateral \( R S T U \) with vertices \( R(-1,2), S(4,2), T(5,-1) \), and \( U(-2,-1) \). Which is the best way to classify the quadrilateral?

Ask by Sanders Cook. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Quadrilateral \( RSTU \) is a trapezoid because it has one pair of parallel sides and the other two sides are equal in length.

Solución

To classify the quadrilateral \( RSTU \), we can analyze the lengths of its sides and the slopes of its sides to determine its properties. 1. **Calculate the lengths of the sides:** - The distance between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by the formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] We will calculate the lengths of each side: - Length of \( RS \): \[ d_{RS} = \sqrt{(4 - (-1))^2 + (2 - 2)^2} = \sqrt{(4 + 1)^2 + 0^2} = \sqrt{5^2} = 5 \] - Length of \( ST \): \[ d_{ST} = \sqrt{(5 - 4)^2 + (-1 - 2)^2} = \sqrt{(1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \] - Length of \( TU \): \[ d_{TU} = \sqrt{(-2 - 5)^2 + (-1 - (-1))^2} = \sqrt{(-7)^2 + 0^2} = \sqrt{49} = 7 \] - Length of \( UR \): \[ d_{UR} = \sqrt{(-1 - (-2))^2 + (2 - (-1))^2} = \sqrt{(1)^2 + (3)^2} = \sqrt{1 + 9} = \sqrt{10} \] 2. **Summarize the lengths:** - \( RS = 5 \) - \( ST = \sqrt{10} \) - \( TU = 7 \) - \( UR = \sqrt{10} \) 3. **Check for parallel sides:** - Calculate the slopes of each side: - Slope of \( RS \): \[ m_{RS} = \frac{2 - 2}{4 - (-1)} = \frac{0}{5} = 0 \] - Slope of \( ST \): \[ m_{ST} = \frac{-1 - 2}{5 - 4} = \frac{-3}{1} = -3 \] - Slope of \( TU \): \[ m_{TU} = \frac{-1 - (-1)}{-2 - 5} = \frac{0}{-7} = 0 \] - Slope of \( UR \): \[ m_{UR} = \frac{2 - (-1)}{-1 - (-2)} = \frac{3}{1} = 3 \] 4. **Analyze the slopes:** - \( RS \) and \( TU \) are horizontal (slope = 0), indicating they are parallel. - \( ST \) and \( UR \) have different slopes, indicating they are not parallel. 5. **Conclusion:** Since \( RS \) is parallel to \( TU \) and the lengths of \( ST \) and \( UR \) are equal, quadrilateral \( RSTU \) is a trapezoid. Thus, the best way to classify the quadrilateral \( RSTU \) is as a **trapezoid**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To classify quadrilateral \( RSTU \), we can examine the lengths of its sides and the slopes of its lines. The length of RS is 5 units and its slope is 0 (horizontal line), while ST has a length of approximately 3.16 units and goes downward, connecting to UT which has a slope of 0, indicating another horizontal line. With these alternating slopes, it appears \( RSTU \) forms a trapezoid, specifically a non-parallel trap since both pairs of opposite sides are not equal. Moreover, by calculating the slopes of each line, you can discover that they differ enough to affirm that not all sides are either horizontal or vertical. It's in this unique configuration that \( RSTU \) claims its title as a trapezoid!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad