Pregunta
upstudy study bank question image url

Let \( f(x)=2 x+1, g(x)=-x^{2}+1 \), and \( h(x)=\frac{1}{x+1} \) The function \( t \) is defined as \( t(x)=\left\{\begin{array}{ll}h(x) & \text { if } x \in(2,6] \\ g(x) & \text { if } x \leq 1\end{array}\right. \) The domain of function \( t \) is:

Ask by Santiago Martin. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domain of function \( t(x) \) is all real numbers less than or equal to 1 and greater than 2 up to and including 6.

Solución

To determine the domain of the function \( t(x) \), we need to analyze the conditions under which each piece of the piecewise function is defined. 1. **For \( h(x) = \frac{1}{x+1} \)**: - The function \( h(x) \) is defined for all \( x \) except where the denominator is zero. Thus, \( h(x) \) is undefined at \( x = -1 \). - The piece \( h(x) \) is used for \( x \in (2, 6] \). Therefore, within this interval, \( h(x) \) is defined. 2. **For \( g(x) = -x^2 + 1 \)**: - The function \( g(x) \) is a polynomial and is defined for all real numbers. - The piece \( g(x) \) is used for \( x \leq 1 \). Therefore, \( g(x) \) is defined for all \( x \) in this range. 3. **Combining the intervals**: - The function \( t(x) \) is defined as: - \( t(x) = h(x) \) for \( x \in (2, 6] \) - \( t(x) = g(x) \) for \( x \leq 1 \) Now, we need to combine these intervals to find the overall domain of \( t(x) \): - From \( g(x) \), we have the interval \( (-\infty, 1] \). - From \( h(x) \), we have the interval \( (2, 6] \). Since there is a gap between \( 1 \) and \( 2 \), the overall domain of \( t(x) \) is: \[ (-\infty, 1] \cup (2, 6] \] Thus, the domain of the function \( t \) is: \[ \boxed{(-\infty, 1] \cup (2, 6]} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The domain of the function \( t(x) \) combines the domains of each piece defined by the conditions \( x \in (2,6] \) for \( h(x) \) and \( x \leq 1 \) for \( g(x) \). This means \( t(x) \) is defined for all values in the interval \( (2, 6] \) and all values less than or equal to \( 1 \). Therefore, the complete domain of \( t(x) \) is \( (-\infty, 1] \cup (2, 6] \). One common mistake is to forget that the conditions for defining \( t(x) \) imply disjoint intervals. It's crucial to recognize that \( t(x) \) does not have any overlap between the two specific ranges, thus leading to a correct understanding of how to express its domain as a union of intervals rather than a continuous range.

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad