\( t^{-1} \frac{d y}{d t}=9 \sin ^{2} y, y(1)=\frac{3 \pi}{4} \) The solution is \( \square \). (Type an implicit solution. Type an equation using \( t \) and \( y \) as the variables.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the differential equation \( t^{-1} \frac{dy}{dt} = 9 \sin^2 y \), we can rearrange it and integrate. This gives us: \[ \int \frac{dy}{\sin^2 y} = 9 \int dt/t \] The integral of \( \frac{1}{\sin^2 y} \) is \( -\cot y \) and the integral of \( \frac{1}{t} \) is \( \ln |t| + C \). Thus, we have: \[ -\cot y = 9 \ln |t| + C \] Using the initial condition \( y(1) = \frac{3\pi}{4} \): \[ -\cot\left(\frac{3\pi}{4}\right) = 9 \ln |1| + C \] \[ 1 = C \] Putting it all together, the implicit solution to the differential equation is: \[ -\cot y = 9 \ln |t| + 1 \]
preguntas relacionadas
