Pregunta
upstudy study bank question image url

8. Find the volume of the solid bounded by the planes \( z=x, y=x, x+y=2 \), and \( z=0 \).

Ask by Boone Rogers. in the United States
Mar 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{1}{3} \).

Solución

**Step 1. Describe the region:** The solid is bounded by the planes \[ z=x,\quad y=x,\quad x+y=2,\quad \text{and} \quad z=0. \] The top of the solid is given by \( z=x \) and the bottom by \( z=0 \). The vertical walls are given by \( y=x \) and \( x+y=2 \). **Step 2. Determine the projection onto the \(xy\)–plane:** Since the planes \( y=x \) and \( x+y=2 \) are vertical (independent of \(z\)), they form the boundary of the region \( R \) in the \(xy\)–plane. For a point \((x,y)\) in \(R\) the value of \(z\) is allowed to vary between \(z=0\) and \(z=x\). The boundaries in the \(xy\)–plane are: - The line \( y=x \). - The line \( x+y=2 \), which can be written as \( y=2-x \). Note that the two lines intersect when \[ x=x,\quad \text{and} \quad x+ x=2 \quad \Longrightarrow \quad 2x=2,\quad x=1,\quad y=1. \] At \( x=0 \): - On \( y=x \) we have \( y=0 \). - On \( x+y=2 \) we have \( y=2 \). Thus, the projected region \( R \) in the \(xy\)–plane is the triangle with vertices \((0,0)\), \((0,2)\), and \((1,1)\). For a fixed \(x\), the variable \(y\) runs from the line \( y=x \) (the lower boundary) up to the line \( y=2-x \) (the upper boundary). Also, \(x\) runs from \(0\) to \(1\) (since at \(x=1\) the two lines meet). **Step 3. Set up the integral for the volume:** The volume \(V\) is given by integrating the height \(z\) from \(z=0\) to \(z=x\) over the region \(R\): \[ V = \int_{x=0}^{1} \int_{y=x}^{2-x} \int_{z=0}^{x} dz\,dy\,dx. \] **Step 4. Integrate with respect to \(z\):** The innermost integral is: \[ \int_{z=0}^{x} dz = x. \] So the volume becomes: \[ V = \int_{x=0}^{1} \int_{y=x}^{2-x} x\,dy\,dx. \] **Step 5. Integrate with respect to \(y\):** For fixed \(x\), \[ \int_{y=x}^{2-x} x\,dy = x\Big[(2-x)-x\Big] = x\,(2-2x). \] Thus, \[ V = \int_{x=0}^{1} x(2-2x)\,dx. \] **Step 6. Integrate with respect to \(x\):** Simplify the integrand: \[ x(2-2x)=2x-2x^2. \] Then, \[ V = \int_{0}^{1} (2x-2x^2)\,dx = 2\int_{0}^{1} (x-x^2)\,dx. \] Now compute the integral: \[ \int_{0}^{1} (x-x^2)\,dx = \left[\frac{x^2}{2}-\frac{x^3}{3}\right]_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}. \] Thus, \[ V = 2\cdot\frac{1}{6} = \frac{1}{3}. \] **Final Answer:** The volume of the solid is \[ \boxed{\frac{1}{3}}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the volume of the solid bounded by the planes \( z=x \), \( y=x \), \( x+y=2 \), and \( z=0 \), we can take the following steps: 1. **Identify the region in the xy-plane**: The plane equations \( y = x \) and \( x + y = 2 \) can be solved simultaneously to find the vertices of the triangular region. Solving gives us the points: - At \( x = 0: y = 2 \) → point \( (0, 2) \), - At \( y = 0: x = 2 \) → point \( (2, 0) \), - At the intersection \( x = y \rightarrow 2x = 2 \) → point \( (1, 1) \). 2. **Set up the bounds**: The region in the xy-plane is bounded by these points. We will set up double integrals to find the volume under the surface \( z = x \) above the triangular region. 3. **Volume Calculation**: The equation of the triangular area in the xy-plane can be described as: - For integrating with respect to \( y \), we can integrate from \( y=x \) to \( y=2 - x \) as \( x \) goes from 0 to 2. Thus, the volume \( V \) can be expressed in a double integral: \[ V = \int_0^2 \int_x^{2-x} x \, dy \, dx \] 4. **Integrate**: \[ V = \int_0^2 [xy]_{y=x}^{y=2-x} \, dx = \int_0^2 [x(2-x) - x^2] \, dx = \int_0^2 (2x - 2x^2) \, dx \] This simplifies to: \[ V = \int_0^2 (2x - 2x^2) \, dx = [x^2 - \frac{2}{3}x^3]_{0}^{2} = (4 - \frac{16}{3}) = \frac{12 - 16}{3} = \frac{4}{3} \] Thus, the volume of the solid is \( \frac{4}{3} \) cubic units.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad