Evaluate, without any tables, \( 3 \log 2+\log 20-\log 1 \cdot 6 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Let's evaluate the expression step by step. We start with the expression: \[ 3 \log 2 + \log 20 - \log 16 \] Using properties of logarithms, we can rewrite \(3 \log 2\) as: \[ 3 \log 2 = \log(2^3) = \log 8 \] Now, we can substitute this back into our expression: \[ \log 8 + \log 20 - \log 16 \] Next, we can combine the logarithms: \[ \log 8 + \log 20 = \log(8 \cdot 20) = \log 160 \] So now we have: \[ \log 160 - \log 16 \] Using the property that \(\log a - \log b = \log\left(\frac{a}{b}\right)\): \[ \log 160 - \log 16 = \log\left(\frac{160}{16}\right) \] Now, simplify \(\frac{160}{16}\): \[ \frac{160}{16} = 10 \] Thus, our expression simplifies to: \[ \log 10 \] Since \(\log 10 = 1\), the final result is: \[ \boxed{1} \]
