Responder
Here are the general solutions for each equation:
a) \( x = \operatorname{arccot}(-\frac{1}{2}) + k\pi \)
b) \( x \approx -21.815223 + 2k\pi \) or \( x \approx -18.184777 + 2k\pi \)
c) \( x = \frac{\pi}{2} + k\pi \)
d) \( x \approx -0.782065 + \frac{2k\pi}{3} \) or \( x \approx 0.782065 + \frac{2k\pi}{3} \)
e) \( x = \frac{\pi + 20}{6} + \frac{2k\pi}{3} \) or \( x = \frac{-\pi + 60}{2} + 2k\pi \)
These solutions cover all possible values of \( x \) that satisfy each equation.
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\cos\left(x+20\right)=-0.242\)
- step1: Use the inverse trigonometric function:
\(x+20=\arccos\left(-0.242\right)\)
- step2: Calculate:
\(\begin{align}&x+20=-\arccos\left(-0.242\right)\\&x+20=\arccos\left(-0.242\right)\end{align}\)
- step3: Add the period:
\(\begin{align}&x+20=-\arccos\left(-0.242\right)+2k\pi ,k \in \mathbb{Z}\\&x+20=\arccos\left(-0.242\right)+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step4: Calculate:
\(\begin{align}&x=-\arccos\left(-0.242\right)-20+2k\pi ,k \in \mathbb{Z}\\&x+20=\arccos\left(-0.242\right)+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step5: Calculate:
\(\begin{align}&x=-\arccos\left(-0.242\right)-20+2k\pi ,k \in \mathbb{Z}\\&x=\arccos\left(-0.242\right)-20+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step6: Find the union:
\(x=\left\{ \begin{array}{l}-\arccos\left(-0.242\right)-20+2k\pi \\\arccos\left(-0.242\right)-20+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step7: Simplify:
\(x\approx \left\{ \begin{array}{l}-21.815223+2k\pi \\-18.184777+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( \sin x + 2 \cos x = 0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\sin\left(x\right)+2\cos\left(x\right)=0\)
- step1: Move the expression to the right side:
\(2\cos\left(x\right)=0-\sin\left(x\right)\)
- step2: Subtract the terms:
\(2\cos\left(x\right)=-\sin\left(x\right)\)
- step3: Divide both sides:
\(\frac{2\cos\left(x\right)}{\sin\left(x\right)}=-1\)
- step4: Divide the terms:
\(2\cot\left(x\right)=-1\)
- step5: Multiply both sides:
\(2\cot\left(x\right)\times \frac{1}{2}=-\frac{1}{2}\)
- step6: Calculate:
\(\cot\left(x\right)=-\frac{1}{2}\)
- step7: Use the inverse trigonometric function:
\(x=\operatorname{arccot}\left(-\frac{1}{2}\right)\)
- step8: Add the period:
\(x=\operatorname{arccot}\left(-\frac{1}{2}\right)+k\pi ,k \in \mathbb{Z}\)
Solve the equation \( \cos 2x + 1 = 0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\cos\left(2x\right)+1=0\)
- step1: Move the constant to the right side:
\(\cos\left(2x\right)=0-1\)
- step2: Remove 0:
\(\cos\left(2x\right)=-1\)
- step3: Use the inverse trigonometric function:
\(2x=\arccos\left(-1\right)\)
- step4: Calculate:
\(2x=\pi \)
- step5: Add the period:
\(2x=\pi +2k\pi ,k \in \mathbb{Z}\)
- step6: Solve the equation:
\(x=\frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
Solve the equation \( \cos 4x \cos x + \sin x (\sin 4x) = -0.7 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\cos\left(4x\right)\cos\left(x\right)+\sin\left(x\right)\sin\left(4x\right)=-0.7\)
- step1: Simplify:
\(\cos\left(3x\right)=-0.7\)
- step2: Use the inverse trigonometric function:
\(3x=\arccos\left(-0.7\right)\)
- step3: Calculate:
\(\begin{align}&3x=-\arccos\left(-0.7\right)\\&3x=\arccos\left(-0.7\right)\end{align}\)
- step4: Add the period:
\(\begin{align}&3x=-\arccos\left(-0.7\right)+2k\pi ,k \in \mathbb{Z}\\&3x=\arccos\left(-0.7\right)+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step5: Calculate:
\(\begin{align}&x=-\frac{\arccos\left(-0.7\right)}{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\\&3x=\arccos\left(-0.7\right)+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step6: Calculate:
\(\begin{align}&x=-\frac{\arccos\left(-0.7\right)}{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\\&x=\frac{\arccos\left(-0.7\right)}{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\end{align}\)
- step7: Find the union:
\(x=\left\{ \begin{array}{l}-\frac{\arccos\left(-0.7\right)}{3}+\frac{2k\pi }{3}\\\frac{\arccos\left(-0.7\right)}{3}+\frac{2k\pi }{3}\end{array}\right.,k \in \mathbb{Z}\)
- step8: Simplify:
\(x\approx \left\{ \begin{array}{l}-0.782065+\frac{2k\pi }{3}\\0.782065+\frac{2k\pi }{3}\end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( \sin (2x + 40) \cos (x + 30) - \cos (2x + 40) \sin (x + 30) = \cos (2x - 20) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\sin\left(2x+40\right)\cos\left(x+30\right)-\cos\left(2x+40\right)\sin\left(x+30\right)=\cos\left(2x-20\right)\)
- step1: Simplify:
\(\sin\left(x+10\right)=\cos\left(2x-20\right)\)
- step2: Move the expression to the left side:
\(\sin\left(x+10\right)-\cos\left(2x-20\right)=0\)
- step3: Transform the expression:
\(-2\sin\left(\frac{\pi -60+2x}{4}\right)\sin\left(\frac{\pi +20-6x}{4}\right)=0\)
- step4: Elimination the left coefficient:
\(\sin\left(\frac{\pi -60+2x}{4}\right)\sin\left(\frac{\pi +20-6x}{4}\right)=0\)
- step5: Separate into possible cases:
\(\begin{align}&\sin\left(\frac{\pi -60+2x}{4}\right)=0\\&\sin\left(\frac{\pi +20-6x}{4}\right)=0\end{align}\)
- step6: Solve the equation:
\(\begin{align}&x=\frac{-\pi +60}{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{\pi +20}{6}+\frac{2k\pi }{3},k \in \mathbb{Z}\end{align}\)
- step7: Find the union:
\(x=\left\{ \begin{array}{l}\frac{\pi +20}{6}+\frac{2k\pi }{3}\\\frac{-\pi +60}{2}+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
Here are the general solutions for each of the equations provided:
### a) \( \sin x + 2 \cos x = 0 \)
To solve this equation, we can rearrange it as follows:
\[
\sin x = -2 \cos x
\]
This can be expressed in terms of the cotangent:
\[
\frac{\sin x}{\cos x} = -2 \implies \tan x = -\frac{1}{2}
\]
Thus, the general solution is:
\[
x = \operatorname{arccot}(-\frac{1}{2}) + k\pi, \quad k \in \mathbb{Z}
\]
### b) \( \cos (x + 20) = -0.242 \)
To solve for \( x \), we take the inverse cosine:
\[
x + 20 = \cos^{-1}(-0.242)
\]
Calculating the values gives:
\[
x \approx \left\{
\begin{array}{l}
-21.815223 + 2k\pi \\
-18.184777 + 2k\pi
\end{array}
\right., \quad k \in \mathbb{Z}
\]
### c) \( \cos 2x + 1 = 0 \)
Rearranging gives:
\[
\cos 2x = -1
\]
The general solution for this is:
\[
x = \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}
\]
### d) \( \cos 4x \cos x + \sin x (\sin 4x) = -0.7 \)
This equation can be solved numerically or graphically. The approximate solutions are:
\[
x \approx \left\{
\begin{array}{l}
-0.782065 + \frac{2k\pi}{3} \\
0.782065 + \frac{2k\pi}{3}
\end{array}
\right., \quad k \in \mathbb{Z}
\]
### e) \( \sin (2x + 40) \cos (x + 30) - \cos (2x + 40) \sin (x + 30) = \cos (2x - 20) \)
This can be simplified using the sine subtraction formula:
\[
\sin((2x + 40) - (x + 30)) = \cos(2x - 20)
\]
This leads to:
\[
\sin(x + 10) = \cos(2x - 20)
\]
The general solutions for this equation are:
\[
x = \left\{
\begin{array}{l}
\frac{\pi + 20}{6} + \frac{2k\pi}{3} \\
\frac{-\pi + 60}{2} + 2k\pi
\end{array}
\right., \quad k \in \mathbb{Z}
\]
These solutions provide the general forms for each of the equations given.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución