Pregunta
upstudy study bank question image url

A \( 2.00-\mathrm{kg} \) ball has zero kinetic and potential energy. Ernie drops the ball into a 10.0 - m-deep well. Just before the ball hits the bottom, the sum of its kinetic and potential energy is: 1). zero. 2) 196 J . 3) -196 J . 4) 392 J . 5) -392 J .

Ask by Valdez Fitzgerald. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The sum of the kinetic and potential energy just before the ball hits the bottom is 196 J.

Solución

To solve this problem, we need to consider the conservation of energy. The total energy of the ball remains constant throughout the process of falling into the well. Given: - Initial kinetic energy = 0 - Initial potential energy = 0 - Depth of the well = 10.0 m - Mass of the ball = 2.00 kg Let's denote the final kinetic energy as \( K_f \) and the final potential energy as \( U_f \). The total energy at the bottom of the well is the sum of the kinetic energy and the potential energy: \[ E_{\text{total}} = K_f + U_f \] The potential energy at the bottom of the well is given by: \[ U_f = mgh \] where: - \( m \) is the mass of the ball - \( g \) is the acceleration due to gravity (approximately 9.8 m/s^2) - \( h \) is the depth of the well Substitute the values into the equation for potential energy: \[ U_f = 2.00 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 10.0 \, \text{m} \] Calculate the potential energy: \[ U_f = 196 \, \text{J} \] Since the initial kinetic energy is zero, the total energy at the bottom of the well is equal to the potential energy: \[ E_{\text{total}} = U_f = 196 \, \text{J} \] Therefore, the sum of the kinetic and potential energy just before the ball hits the bottom is 196 J. The correct answer is 2) 196 J.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

As Ernie drops the ball into the well, it converts potential energy to kinetic energy. At the top, the potential energy is given by \( PE = mgh \), where \( m = 2.00 \, \mathrm{kg} \) and \( h = 10.0 \, \mathrm{m} \). Plugging in the numbers, \( PE = 2.00 \times 9.81 \times 10.0 = 196.2 \, \mathrm{J} \). Just before the ball hits the bottom, all this potential energy has transformed into kinetic energy, making the total mechanical energy (kinetic + potential) equal to \( 196.2 \, \mathrm{J} \), which rounds to 196 J. The correct answer is 2) 196 J. Now, let’s talk about how gravity plays its part in this energetic dance! When an object falls, gravity is the force that constantly accelerates it downwards at approximately \( 9.81 \, \mathrm{m/s^2} \). This means the ball speeds up as it drops, gaining kinetic energy while losing potential energy. It’s like a cosmic yo-yo—each meter down means more speed, until it reaches that thrilling crash at the bottom of the well!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad