Pregunta
upstudy study bank question image url

\[ x^{2}-5 x+6 \] 3) What value of \( g \) will make the expression: \( 4 x^{2}+18 x+g \) coul mave it to have equal roots (perfect sqdare)?

Ask by Li Franklin. in Nigeria
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( g \) that makes the expression \( 4x^2 + 18x + g \) have equal roots is \( 20.25 \).

Solución

To determine the value of \( g \) that will make the expression \( 4x^2 + 18x + g \) have equal roots, we need to ensure that the discriminant of the quadratic equation is zero. The general form of a quadratic equation is given by: \[ ax^2 + bx + c \] where \( a = 4 \), \( b = 18 \), and \( c = g \). The discriminant \( D \) is calculated using the formula: \[ D = b^2 - 4ac \] For the quadratic to have equal roots, we set the discriminant to zero: \[ D = 0 \] Now, substituting the values of \( a \), \( b \), and \( c \): \[ D = 18^2 - 4 \cdot 4 \cdot g \] Setting the discriminant to zero gives us: \[ 18^2 - 4 \cdot 4 \cdot g = 0 \] Now, let's calculate \( 18^2 \) and solve for \( g \): \[ 324 - 16g = 0 \] Now, we can solve for \( g \): \[ 16g = 324 \] \[ g = \frac{324}{16} \] Now, let's simplify \( \frac{324}{16} \): \[ g = 20.25 \] Thus, the value of \( g \) that will make the expression \( 4x^2 + 18x + g \) have equal roots is: \[ \boxed{20.25} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To have equal roots, the discriminant of the quadratic equation must be zero. The discriminant \(\Delta\) for the equation \( 4x^{2} + 18x + g \) is calculated as \(\Delta = b^{2} - 4ac\). Here, \(a = 4\), \(b = 18\), and \(c = g\). So, we can set up the equation: \[ \Delta = 18^{2} - 4 \cdot 4 \cdot g = 0. \] Solving for \(g\), we get: \[ 324 - 16g = 0 \implies 16g = 324 \implies g = \frac{324}{16} = 20.25. \] So, \(g = 20.25\) will make \(4x^{2} + 18x + g\) have equal roots, turning it into a perfect square! Now let’s explore how quadratics like this are actually found in many real-life scenarios! For example, the trajectory of a ball thrown in the air can be modeled using quadratic equations. The highest point – or vertex – of that curve can be represented by adjusting the coefficients just right, which is what you do when you're finding those roots. Quadratics pop up in everything from sports to finance—neatly illustrating how math helps us understand the world!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad