Pregunta
upstudy study bank question image url

1. Show graphically the region \( R \) which satisfies the set of inequalities: \( 2 x+3 y \leq 26 \) \( x+2 y \) \( \begin{aligned} & \leq 16 \\ x & \geq 0 \\ y & \geq 0\end{aligned} \)

Ask by Pope Guzman. in Nigeria
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The region \( R \) is the area in the first quadrant bounded by the lines \( 2x + 3y = 26 \) and \( x + 2y = 16 \), including the intersection point \( (4, 6) \).

Solución

It seems that the system does not currently support plotting. However, I can guide you through the process of graphing the region \( R \) that satisfies the given inequalities step by step. ### Step 1: Graph the Boundary Lines 1. **For the inequality \( 2x + 3y \leq 26 \)**: - First, find the boundary line by setting the equation to equality: \[ 2x + 3y = 26 \] - To find the intercepts: - Set \( x = 0 \): \[ 3y = 26 \implies y = \frac{26}{3} \approx 8.67 \] - Set \( y = 0 \): \[ 2x = 26 \implies x = 13 \] - The intercepts are \( (0, \frac{26}{3}) \) and \( (13, 0) \). 2. **For the inequality \( x + 2y \leq 16 \)**: - Find the boundary line: \[ x + 2y = 16 \] - To find the intercepts: - Set \( x = 0 \): \[ 2y = 16 \implies y = 8 \] - Set \( y = 0 \): \[ x = 16 \] - The intercepts are \( (0, 8) \) and \( (16, 0) \). ### Step 2: Determine the Feasible Region - The inequalities \( x \geq 0 \) and \( y \geq 0 \) restrict the region to the first quadrant. - The region satisfying \( 2x + 3y \leq 26 \) is below the line \( 2x + 3y = 26 \). - The region satisfying \( x + 2y \leq 16 \) is below the line \( x + 2y = 16 \). ### Step 3: Find the Intersection Points To find the intersection of the two lines, solve the system of equations: 1. \( 2x + 3y = 26 \) 2. \( x + 2y = 16 \) Let's solve this system. 1. From the second equation, express \( x \) in terms of \( y \): \[ x = 16 - 2y \] 2. Substitute into the first equation: \[ 2(16 - 2y) + 3y = 26 \] \[ 32 - 4y + 3y = 26 \] \[ 32 - y = 26 \implies y = 6 \] 3. Substitute \( y = 6 \) back into \( x = 16 - 2y \): \[ x = 16 - 2(6) = 4 \] The intersection point is \( (4, 6) \). ### Step 4: Graph the Region - Plot the lines and shade the regions that satisfy the inequalities. - The feasible region \( R \) is bounded by the lines and the axes, including the intersection point \( (4, 6) \). ### Conclusion The region \( R \) is the area in the first quadrant that is below both lines and includes the intersection point \( (4, 6) \). You can graph this using graphing software or by hand based on the steps provided.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To graph the region \( R \) that satisfies the given inequalities, we will first rewrite each inequality as an equation to find the boundaries and then sketch the graph. 1. For the first inequality, \( 2x + 3y \leq 26 \): - Set \( 2x + 3y = 26 \). - Find intercepts: - When \( x = 0 \): \( 3y = 26 \) → \( y = \frac{26}{3} \approx 8.67 \) - When \( y = 0 \): \( 2x = 26 \) → \( x = 13 \) - Draw the line through points (0, 8.67) and (13, 0) and shade the area below this line. 2. For the second inequality, \( x + 2y \leq 16 \): - Set \( x + 2y = 16 \). - Find intercepts: - When \( x = 0 \): \( 2y = 16 \) → \( y = 8 \) - When \( y = 0 \): \( x = 16 \) - Draw the line through points (0, 8) and (16, 0) and shade the area below this line. Next, we'll consider the non-negativity constraints \( x \geq 0 \) and \( y \geq 0 \), meaning we are only interested in the first quadrant. The feasible region \( R \) is where all the shaded areas intersect within the first quadrant. This will appear as a polygon bounded by the lines we’ve drawn and constrained by the axes. The vertices of this polygon can also be determined by solving the equations of the lines for intersection points, providing the vertices of the feasible region.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad