Pregunta
upstudy study bank question image url

In the sketch alongside, AD is a vertical line. \( \triangle \mathrm{BDC} \) lies in a horizontal plane. \( \mathrm{BC}=13 \mathrm{~cm} \), \( \mathrm{DBC}=40^{\circ} . \mathrm{BDC}=110^{\circ} \). The angle of elevation of A from C is \( 35^{\circ} \) and the angle of elevation of A from B is \( \theta \). Calculate (1) the length of AD . (2) the length of AB . (3) the magnitude of \( \theta \). (4) the magnitude of BAC . (5) the area of \( \triangle \mathrm{ABC} \).

Ask by Reed Savage. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. The length of AD is approximately **11.71 cm**. 2. The length of AB is approximately **14.56 cm**. 3. The magnitude of θ is approximately **53.5 degrees**. 4. The magnitude of angle BAC is **115 degrees**. 5. The area of triangle ABC is approximately **75.42 cm²**.

Solución

Alright, I need to solve this geometry problem involving triangle BDC and point A. Let's break down the information given and figure out how to approach each part of the question. First, let's summarize the given information: - AD is a vertical line. - Triangle BDC lies in a horizontal plane. - BC = 13 cm. - Angle DBC = 40 degrees. - Angle BDC = 110 degrees. - Angle of elevation of A from C is 35 degrees. - Angle of elevation of A from B is θ. - We need to calculate: 1. The length of AD. 2. The length of AB. 3. The magnitude of θ. 4. The magnitude of angle BAC. 5. The area of triangle ABC. Okay, let's start by visualizing the scenario. Since AD is vertical and triangle BDC is in a horizontal plane, point A must be somewhere above the plane, directly above point D. This means that AD is perpendicular to the plane of triangle BDC. Given that BC = 13 cm, and angles DBC and BDC are 40° and 110° respectively, we can deduce that angle B is 180° - 40° - 110° = 30°. So, angle B in triangle BDC is 30 degrees. Now, the angle of elevation of A from C is 35 degrees. This means that if we draw a line from point C to point A, the angle between this line and the horizontal plane is 35 degrees. Similarly, the angle of elevation of A from B is θ, which we need to find. Let's tackle the first part: calculating the length of AD. Since AD is vertical and forms a right angle with the horizontal plane, and the angle of elevation from C to A is 35 degrees, we can use trigonometry to find AD. The angle of elevation from C to A is the angle between the horizontal and the line AC. Therefore, in the right triangle formed by points A, C, and the projection of A on the plane, we have: tan(35°) = AD / CD But we don't know CD yet. Maybe we can find CD using the given angles in triangle BDC. In triangle BDC, we have: - BC = 13 cm - Angle B = 30° - Angle DBC = 40° - Angle BDC = 110° Using the Law of Sines in triangle BDC: sin(B) / BC = sin(DBC) / DC Plugging in the known values: sin(30°) / 13 = sin(40°) / DC Solving for DC: DC = (13 * sin(40°)) / sin(30°) Calculating the values: sin(30°) = 0.5 sin(40°) ≈ 0.6428 So, DC ≈ (13 * 0.6428) / 0.5 ≈ 16.72 cm Now, using the tangent of the angle of elevation from C to A: tan(35°) = AD / 16.72 Calculating tan(35°): tan(35°) ≈ 0.7002 So, AD ≈ 16.72 * 0.7002 ≈ 11.71 cm Therefore, the length of AD is approximately 11.71 cm. Next, let's find the length of AB. Since AD is vertical and AB is the hypotenuse of the right triangle ABD, we can use the Pythagorean theorem. First, we need to find BD. In triangle BDC, we have: - BC = 13 cm - DC ≈ 16.72 cm - Angle B = 30° Using the Law of Cosines to find BD: BD² = BC² + DC² - 2 * BC * DC * cos(B) Plugging in the values: BD² = 13² + 16.72² - 2 * 13 * 16.72 * cos(30°) BD² = 169 + 279.5584 - 2 * 13 * 16.72 * 0.8660 BD² = 448.5584 - 2 * 13 * 16.72 * 0.8660 BD² = 448.5584 - 374.24 BD² ≈ 74.3184 BD ≈ √74.3184 ≈ 8.62 cm Now, using the Pythagorean theorem in triangle ABD: AB² = AD² + BD² AB² = 11.71² + 8.62² AB² ≈ 137.0241 + 74.3184 AB² ≈ 211.3425 AB ≈ √211.3425 ≈ 14.56 cm So, the length of AB is approximately 14.56 cm. Now, let's find the magnitude of θ, the angle of elevation of A from B. We know that the angle of elevation from C to A is 35 degrees, and we've found AD ≈ 11.71 cm. To find θ, we can use the tangent function in triangle ABD. tan(θ) = AD / BD tan(θ) ≈ 11.71 / 8.62 ≈ 1.356 So, θ ≈ arctan(1.356) ≈ 53.5 degrees Therefore, the magnitude of θ is approximately 53.5 degrees. Next, let's find the magnitude of angle BAC. In triangle ABC, we have: - Angle at B = 30° - Angle at C = 35° (angle of elevation from C to A) - Angle at A = ? Since the sum of angles in a triangle is 180°: Angle at A = 180° - 30° - 35° = 115° So, the magnitude of angle BAC is 115 degrees. Finally, let's calculate the area of triangle ABC. We can use the formula for the area of a triangle: Area = (1/2) * base * height Here, we can consider BC as the base and AD as the height. Area = (1/2) * BC * AD Area = (1/2) * 13 * 11.71 ≈ 75.415 cm² Therefore, the area of triangle ABC is approximately 75.42 cm².

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the given geometric problem, we can break it down step by step. 1. **Calculate the length of AD:** We can use the Law of Sines in triangle BDC to find the lengths of the sides BC and DC. In triangle DBC, we know: - \( BC = 13 \, \text{cm} \) - \( \angle DBC = 40^\circ \) - \( \angle BDC = 110^\circ \) The remaining angle \( \angle BCD \) can be calculated as \( 180^\circ - (40^\circ + 110^\circ) = 30^\circ \). Using the Law of Sines: \[ \frac{BD}{\sin(30^\circ)} = \frac{BC}{\sin(110^\circ)} \] From this, we get \( BD = \frac{13 \cdot \sin(30^\circ)}{\sin(110^\circ)} \approx \frac{13 \cdot 0.5}{0.9397} \approx 6.93 \, \text{cm} \). Next, we find AD using the angle of elevation from C, \( \angle ACB = 35^\circ \): \[ \text{AD} = BC \cdot \tan(35^\circ) \approx 13 \cdot 0.7002 \approx 9.10 \, \text{cm}. \] 2. **Calculate the length of AB:** For triangle ABC, we can use the height AD and the length AC. We can use the tangent from point C to find AD. Using \( \tan(35^\circ) = \frac{AD}{AC} \), we get: \[ AC = \frac{AD}{\tan(35^\circ)} \approx \frac{9.10}{0.7002} \approx 12.99 \, \text{cm}. \] Using the cosine rule in triangle ABC where \( AB^2 = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos(30^\circ) \): \[ AB = \sqrt{(12.99)^2 + (13)^2 - 2 \cdot 12.99 \cdot 13 \cdot 0.866} \approx 12.99 \, \text{cm}. \] 3. **Magnitude of \( \theta \):** In triangle ABC, we already have values for sides AC and BC, including angle BAC: \[ \theta = \tan^{-1}\left(\frac{AD}{BC}\right) \approx \tan^{-1}\left(\frac{9.10}{13}\right) \approx 35.06^\circ. \] 4. **Magnitude of BAC:** Using the triangle angle sum property, \( \angle BAC = 180^\circ - (110^\circ + 30^\circ) = 40^\circ \). 5. **Area of triangle ABC:** The area can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \cdot BC \cdot AD. \] Therefore, \[ \text{Area}_{ABC} = \frac{1}{2} \cdot 13 \cdot 9.10 \approx 59.15 \, \text{cm}^2. \] So, the results are: (1) Length of AD: \( \approx 9.10 \, \text{cm} \) (2) Length of AB: \( \approx 12.99 \, \text{cm} \) (3) Magnitude of \( \theta: \approx 35.06^\circ \) (4) Magnitude of BAC: \( 40^\circ \) (5) Area of triangle ABC: \( \approx 59.15 \, \text{cm}^2 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad