Pregunta
upstudy study bank question image url

The LCM and the HCF of \( 5 a^{2} b \) and \( 3 a b^{2} \) respectively are:

Ask by Pritchard Rodriquez. in Nigeria
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The HCF is \( a b \) and the LCM is \( 15 a^{2} b^{2} \).

Solución

To find the Least Common Multiple (LCM) and the Highest Common Factor (HCF) of the expressions \( 5 a^{2} b \) and \( 3 a b^{2} \), we will follow these steps: 1. **Identify the prime factorization of each term.** 2. **Determine the HCF.** 3. **Determine the LCM.** ### Step 1: Prime Factorization - For \( 5 a^{2} b \): - The prime factors are \( 5 \), \( a^{2} \), and \( b \). - For \( 3 a b^{2} \): - The prime factors are \( 3 \), \( a \), and \( b^{2} \). ### Step 2: Finding the HCF The HCF is found by taking the lowest power of each common factor. - For the numerical coefficients: - The common factor is \( 1 \) (since \( 5 \) and \( 3 \) have no common factors). - For \( a \): - The lowest power is \( a^{1} \). - For \( b \): - The lowest power is \( b^{1} \). Thus, the HCF is: \[ \text{HCF} = 1 \cdot a^{1} \cdot b^{1} = a b \] ### Step 3: Finding the LCM The LCM is found by taking the highest power of each factor. - For the numerical coefficients: - The LCM of \( 5 \) and \( 3 \) is \( 15 \). - For \( a \): - The highest power is \( a^{2} \). - For \( b \): - The highest power is \( b^{2} \). Thus, the LCM is: \[ \text{LCM} = 15 \cdot a^{2} \cdot b^{2} = 15 a^{2} b^{2} \] ### Final Results - The HCF of \( 5 a^{2} b \) and \( 3 a b^{2} \) is \( a b \). - The LCM of \( 5 a^{2} b \) and \( 3 a b^{2} \) is \( 15 a^{2} b^{2} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the LCM and HCF (GCD) of the expressions \( 5 a^{2} b \) and \( 3 a b^{2} \), we first identify the prime factors: - \( 5 a^{2} b = 5 \cdot a^2 \cdot b^1 \) - \( 3 a b^{2} = 3 \cdot a^1 \cdot b^2 \) Now, let's find the HCF, which is determined by taking the lowest power of each common factor: - For \( 5 \) and \( 3 \): There's no common prime factor, so we ignore. - For \( a \): The lowest power is \( a^1 \). - For \( b \): The lowest power is \( b^1 \). Thus, the HCF is \( a^{1} b^{1} = ab \). Next, we find the LCM by taking the highest power of each factor: - For \( 5 \) and \( 3 \): The LCM is \( 15 \). - For \( a \): The highest power is \( a^2 \). - For \( b \): The highest power is \( b^2 \). Hence, the LCM is \( 15 a^{2} b^{2} \). So, the LCM of \( 5 a^{2} b \) and \( 3 a b^{2} \) is \( 15 a^{2} b^{2} \) and the HCF is \( ab \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad