Pregunta
upstudy study bank question image url

\( p: 2 p+2: 5 p+3: \ldots \) are the first three terms of an arithmetic sequen (a) Calculate the value of \( p \). (b) Determine the sequence. (c) Find the 49 th term. (d) Which term of the sequence is \( 100 \frac{1}{2} \) ?

Ask by Potter Chen. in South Africa
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( p = \frac{1}{2} \) (b) The sequence is \( \frac{1}{2}, \, 3, \, 5.5, \, \ldots \) with a common difference of \( \frac{5}{2} \). (c) The 49th term is \( 120.5 \). (d) \( 100 \frac{1}{2} \) is the 41st term.

Solución

Let's analyze the arithmetic sequence \( p, \, 2p + 2, \, 5p + 3, \ldots \) and solve each part step by step. ### (a) Calculate the value of \( p \) In an arithmetic sequence, the difference between consecutive terms is constant. Let's denote this common difference by \( d \). Given the first three terms: 1. \( a_1 = p \) 2. \( a_2 = 2p + 2 \) 3. \( a_3 = 5p + 3 \) The common difference \( d \) can be calculated as: \[ d = a_2 - a_1 = (2p + 2) - p = p + 2 \] \[ d = a_3 - a_2 = (5p + 3) - (2p + 2) = 3p + 1 \] Setting the two expressions for \( d \) equal to each other: \[ p + 2 = 3p + 1 \] \[ 2 - 1 = 3p - p \] \[ 1 = 2p \quad \Rightarrow \quad p = \frac{1}{2} \] **Answer:** \( p = \frac{1}{2} \) ### (b) Determine the sequence With \( p = \frac{1}{2} \), let's find the first few terms and establish the general formula. 1. \( a_1 = p = \frac{1}{2} \) 2. \( a_2 = 2p + 2 = 2 \times \frac{1}{2} + 2 = 1 + 2 = 3 \) 3. \( a_3 = 5p + 3 = 5 \times \frac{1}{2} + 3 = \frac{5}{2} + 3 = \frac{11}{2} = 5.5 \) The common difference \( d \) is: \[ d = 3 - \frac{1}{2} = \frac{5}{2} = 2.5 \] The general term \( a_n \) of the sequence can be expressed as: \[ a_n = a_1 + (n - 1)d = \frac{1}{2} + (n - 1) \times \frac{5}{2} = \frac{5n - 4}{2} \] **Answer:** The sequence is given by \( a_n = \frac{5n - 4}{2} \). The first few terms are \( \frac{1}{2}, \, 3, \, 5.5, \, \ldots \) with a common difference of \( \frac{5}{2} \). ### (c) Find the 49th term Using the general formula: \[ a_{49} = \frac{5 \times 49 - 4}{2} = \frac{245 - 4}{2} = \frac{241}{2} = 120.5 \] **Answer:** The 49th term is \( 120.5 \) or \( 120 \frac{1}{2} \). ### (d) Which term of the sequence is \( 100 \frac{1}{2} \)? We need to find \( n \) such that: \[ a_n = 100.5 = \frac{5n - 4}{2} \] Multiply both sides by 2: \[ 5n - 4 = 201 \] Add 4 to both sides: \[ 5n = 205 \] Divide by 5: \[ n = 41 \] **Answer:** \( 100 \frac{1}{2} \) is the 41st term of the sequence.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the given arithmetic sequence, we start with the terms: 1. The first term is \( p \). 2. The second term is \( 2p + 2 \). 3. The third term is \( 5p + 3 \). ### (a) Calculate the value of \( p \). In an arithmetic sequence, the difference between consecutive terms is constant. Therefore, the difference between the second term and the first term should equal the difference between the third term and the second term: \[ (2p + 2) - p = (5p + 3) - (2p + 2) \] Calculating both sides gives: \[ p + 2 = 3p + 1 \] Now, rearranging this equation: \[ p + 2 - 1 = 3p \] \[ 1 = 3p - p \] \[ 1 = 2p \] \[ p = \frac{1}{2} \] ### (b) Determine the sequence. Using \( p = \frac{1}{2} \): 1. First term: \( p = \frac{1}{2} \) 2. Second term: \( 2p + 2 = 2(\frac{1}{2}) + 2 = 1 + 2 = 3 \) 3. Third term: \( 5p + 3 = 5(\frac{1}{2}) + 3 = \frac{5}{2} + 3 = \frac{5}{2} + \frac{6}{2} = \frac{11}{2} \) Now calculating the common difference: \[ 3 - \frac{1}{2} = \frac{6}{2} - \frac{1}{2} = \frac{5}{2} \] \[ \frac{11}{2} - 3 = \frac{11}{2} - \frac{6}{2} = \frac{5}{2} \] Thus, the sequence is: \( \frac{1}{2}, 3, \frac{11}{2}, \ldots \) ### (c) Find the 49th term. The \( n \)-th term of an arithmetic sequence can be calculated using the formula: \[ a_n = a_1 + (n - 1)d \] Where \( a_1 = \frac{1}{2} \) and \( d = \frac{5}{2} \): \[ a_{49} = \frac{1}{2} + (49 - 1)\frac{5}{2} \] \[ = \frac{1}{2} + 48 \cdot \frac{5}{2} \] \[ = \frac{1}{2} + \frac{240}{2} \] \[ = \frac{241}{2} \] ### (d) Which term of the sequence is \( 100 \frac{1}{2} \)? First, convert \( 100 \frac{1}{2} \) to an improper fraction: \[ 100 \frac{1}{2} = 100.5 = \frac{201}{2} \] We set this equal to the \( n \)-th term formula: \[ \frac{201}{2} = \frac{1}{2} + (n - 1) \frac{5}{2} \] Isolate \( n \): \[ \frac{201}{2} - \frac{1}{2} = (n - 1) \frac{5}{2} \] \[ \frac{200}{2} = (n - 1) \frac{5}{2} \] \[ 100 = (n - 1) \cdot \frac{5}{2} \] Multiplying through by \( 2 \): \[ 200 = 5(n - 1) \] \[ 40 = n - 1 \] \[ n = 41 \] Thus, \( 100 \frac{1}{2} \) is the \( 41^{st} \) term of the sequence.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad