Pregunta
upstudy study bank question image url

The relationship between the elapsed time \( t \), in hours, since Dominic sent the letter, and the number of people, \( P_{\text {hour }}(t) \), who receive the email is modeled by the following function: \( P_{\text {hour }}(t)=18 \cdot(1.05)^{t} \) Complete the following sentence about the daily rate of change in the number of people who receive the email. Round your answer to two decimal places. Every day, the number of people who receive the email grows py a factor of

Ask by Powers Kelly. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Every day, the number of people who receive the email grows by a factor of **3.23**.

Solución

To determine the daily growth factor for the number of people receiving the email, let's break down the given information: - **Function Provided:** \( P_{\text{hour}}(t) = 18 \cdot (1.05)^t \) - **\( t \):** Time in hours - **Growth Factor per Hour:** \( 1.05 \) Since there are 24 hours in a day, the daily growth factor is calculated by raising the hourly growth factor to the power of 24: \[ \text{Daily Growth Factor} = (1.05)^{24} \] Calculating this: \[ (1.05)^{24} \approx 3.23 \] **Conclusion:** Every day, the number of people who receive the email grows by a factor of **3.23**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the daily rate of change in the number of people receiving the email, we need to evaluate how much \( P_{\text{hour}}(t) \) changes from one day (24 hours) to the next. We can calculate the daily growth factor by evaluating \( P_{\text{hour}}(24) \) and \( P_{\text{hour}}(0) \) and finding the ratio. After performing the calculations, we find that every day, the number of people who receive the email grows by a factor of approximately **\(2.66\)**. So, each day more than double the number of people are reached compared to the previous day! If you were to send an email in the morning, you could expect the number of recipients to rise dramatically by the next day, spreading like wildfire!

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad