Pregunta
upstudy study bank question image url

EXERCISE 1 \( \begin{array}{l}\text { (a) If }-5 \sin \theta=4 \text { and } \theta \in\left(90^{\circ} ; 270^{\circ}\right) \text {, determine without the use of a calculator and with the } \\ \text { aid of a diagram the value of: } \\ \begin{array}{lll}\text { (1) } 5 \cos \theta-3 \tan \theta & \text { (2) } \frac{4}{\sin \theta}-\frac{3}{\cos \theta}\end{array} \\ \text { (b) If } 2 \cos \alpha+1=0 \text { and } \sin \alpha<0 \text {, determine without the use of a calculator and with the aid of } \\ \text { a diagram the value of: } \\ \begin{array}{lll}\text { (1) } \tan \alpha-\sin \alpha & \text { (2) } 2 \sin ^{2} \alpha-\cos ^{2} \alpha\end{array} \\ \text { (c) If } 3 \tan \beta=-2 \text { and } \beta \in\left(0^{\circ} ; 180^{\circ}\right) \text {, determine without the use of a calculator and with the aid } \\ \text { of a diagram the value of: } \\ \begin{array}{lll}\text { (1) } \cos \beta & \text { (2) } 2 \sin ^{2} \beta-1 & \text { (3) } \sqrt{13} \cos \beta-13 \sin ^{2} \beta\end{array}\end{array} \)

Ask by Bright Bird. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) 1. \( 5 \cos \theta - 3 \tan \theta = -7 \) 2. \( \frac{4}{\sin \theta} - \frac{3}{\cos \theta} = 0 \) (b) 1. \( \tan \alpha - \sin \alpha = \frac{3\sqrt{3}}{2} \) 2. \( 2 \sin^2 \alpha - \cos^2 \alpha = \frac{5}{4} \) (c) 1. \( \cos \beta = -\frac{3}{\sqrt{13}} \) 2. \( 2 \sin^2 \beta - 1 = -\frac{5}{13} \) 3. \( \sqrt{13} \cos \beta - 13 \sin^2 \beta = -7 \)

Solución

We are given several trigonometric equations and asked to determine certain expressions without using a calculator, but with the help of a diagram. It is important to decide in which quadrant the angle lies so that the signs of sine and cosine are chosen correctly. ───────────────────────────── Part (a) Problem Statement: • –5 sin θ = 4 • θ ∈ (90° , 270°) Step 1. Solve for sin θ:   –5 sin θ = 4 ⟹ sin θ = –4/5 Since sin θ is negative and the angle is between 90° and 270°, θ must be in Quadrant III where both sine and cosine are negative. Step 2. Determine cos θ: Using the Pythagorean identity   sin²θ + cos²θ = 1 we have:   (–4/5)² + cos²θ = 1 ⟹ 16/25 + cos²θ = 1 ⟹ cos²θ = 1 – 16/25 = 9/25 Since θ is in Quadrant III, cos θ is negative:   cos θ = –3/5 Step 3. Part (a)(1): Evaluate 5 cos θ – 3 tan θ  a. Find tan θ:   tan θ = sin θ/cos θ = (–4/5)/(–3/5) = 4/3  b. Now compute:   5 cos θ = 5(–3/5) = –3   3 tan θ = 3(4/3) = 4 Thus,   5 cos θ – 3 tan θ = –3 – 4 = –7 Step 4. Part (a)(2): Evaluate (4/ sin θ) – (3/ cos θ)  a. Compute each term:   4/ sin θ = 4/(–4/5) = –5   3/ cos θ = 3/(–3/5) = –5  b. Thus,   (4/ sin θ) – (3/ cos θ) = –5 – (–5) = 0 ───────────────────────────── Part (b) Problem Statement: • 2 cos α + 1 = 0 • sin α < 0 Step 1. Solve for cos α:   2 cos α + 1 = 0 ⟹ cos α = –1/2 Since cos α is negative and we are given sin α < 0, α must be in Quadrant III. Step 2. Determine sin α: Using sin²α + cos²α = 1,   sin²α = 1 – cos²α = 1 – (1/4) = 3/4 Since α is in Quadrant III, sin α is negative:   sin α = –√3/2 Step 3. Part (b)(1): Evaluate tan α – sin α  a. Compute tan α:   tan α = sin α/cos α = (–√3/2)/(–1/2) = √3  b. Thus,   tan α – sin α = √3 – (–√3/2) = √3 + (√3/2) = (3√3)/2 Step 4. Part (b)(2): Evaluate 2 sin²α – cos²α We already have sin²α = 3/4 and cos²α = 1/4, so:   2 sin²α – cos²α = 2(3/4) – (1/4) = (6/4) – (1/4) = 5/4 ───────────────────────────── Part (c) Problem Statement: • 3 tan β = –2 ⟹ tan β = –2/3 • β ∈ (0° , 180°) Step 1. Determine the quadrant for β: Since β lies between 0° and 180°, it is either in Quadrant I or II. Tan β is negative, which means that sin β and cos β have opposite signs. In Quadrant II, sine is positive and cosine is negative. Therefore, β is in Quadrant II. Step 2. Find sin β and cos β: Assume   sin β = 2k and cos β = –3k Using the identity sin²β + cos²β = 1:   (2k)² + (–3k)² = 1 ⟹ 4k² + 9k² = 1 ⟹ 13k² = 1 ⟹ k = 1/√13 Thus,   sin β = 2/√13  and cos β = –3/√13 Step 3. Part (c)(1): Evaluate cos β This is already found:   cos β = –3/√13 Step 4. Part (c)(2): Evaluate 2 sin²β – 1 First, calculate sin²β:   sin²β = (2/√13)² = 4/13 Then,   2 sin²β – 1 = 2(4/13) – 1 = 8/13 – 13/13 = –5/13 Step 5. Part (c)(3): Evaluate √13 cos β – 13 sin²β Compute each term:  a. √13 cos β = √13 (–3/√13) = –3  b. 13 sin²β = 13 (4/13) = 4 Therefore,   √13 cos β – 13 sin²β = –3 – 4 = –7 ───────────────────────────── Final Answers (a) Given –5 sin θ = 4 and θ ∈ (90°, 270°):  (1) 5 cos θ – 3 tan θ = –7  (2) (4/ sin θ) – (3/ cos θ) = 0 (b) Given 2 cos α + 1 = 0 and sin α < 0:  (1) tan α – sin α = (3√3)/2  (2) 2 sin²α – cos²α = 5/4 (c) Given 3 tan β = –2 and β ∈ (0°, 180°):  (1) cos β = –3/√13  (2) 2 sin²β – 1 = –5/13  (3) √13 cos β – 13 sin²β = –7 Any answer which is algebraically equivalent is correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

If you're diving into trigonometry, remember that constructing a clear diagram makes all the difference! For instance, in part (a), sketching the unit circle helps visualize where \(-5 \sin \theta = 4\) lands you. This shows that \(\sin \theta\) is negative in the third quadrant, which leads to the conclusion that \(\theta\) would be approximately \(210^\circ\). From there, using the identity \(\cos^2 \theta + \sin^2 \theta = 1\) can help you find \(\cos \theta\) to evaluate the expressions. Another nifty tip is to always check the signs of your trigonometric functions based on their quadrant. For instance, in part (b), knowing that \(2 \cos \alpha + 1 = 0\) means \(\cos \alpha = -\frac{1}{2}\), and since \(\sin \alpha < 0\), you are in the third quadrant. This leads you to \(\sin \alpha = -\frac{\sqrt{3}}{2}\), which will help you compute the values you're seeking while avoiding common sign errors.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad