Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To solve the equation \( x^{2} + 12 = 10 \), we first isolate \( x^{2} \) by subtracting 12 from both sides: \[ x^{2} = 10 - 12 \] \[ x^{2} = -2 \] Now, we notice that there are no real solutions since the square of a real number cannot be negative. However, we can find imaginary roots! Taking the square root of both sides, we get: \[ x = \pm \sqrt{-2} = \pm i\sqrt{2} \] So the solutions are \( x = i\sqrt{2} \) and \( x = -i\sqrt{2} \).
