Pregunta
upstudy study bank question image url

12. It took 3 hours to row a boat 18 km against the current. The return trip with the current took \( 1 \frac{1}{2} \) hours. Find the speed of the rowboat in still water.

Ask by Savage Robbins. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The speed of the rowboat in still water is 9 km/h.

Solución

Let's denote the speed of the rowboat in still water as \( v \) and the speed of the current as \( c \). Given: - Time taken to row against the current = 3 hours - Distance covered against the current = 18 km - Time taken to row with the current = \( 1 \frac{1}{2} \) hours - Distance covered with the current = 18 km We can use the formula: \[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \] For the trip against the current: \[ v - c = \frac{18}{3} \] \[ v - c = 6 \] For the trip with the current: \[ v + c = \frac{18}{1.5} \] \[ v + c = 12 \] Now, we have a system of two equations: \[ v - c = 6 \] \[ v + c = 12 \] We can solve this system of equations to find the values of \( v \) and \( c \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}v-c=6\\v+c=12\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}c=-6+v\\v+c=12\end{array}\right.\) - step2: Substitute the value of \(c:\) \(v-6+v=12\) - step3: Add the terms: \(2v-6=12\) - step4: Move the constant to the right side: \(2v=12+6\) - step5: Add the numbers: \(2v=18\) - step6: Divide both sides: \(\frac{2v}{2}=\frac{18}{2}\) - step7: Divide the numbers: \(v=9\) - step8: Substitute the value of \(v:\) \(c=-6+9\) - step9: Calculate: \(c=3\) - step10: Calculate: \(\left\{ \begin{array}{l}c=3\\v=9\end{array}\right.\) - step11: Check the solution: \(\left\{ \begin{array}{l}c=3\\v=9\end{array}\right.\) - step12: Rewrite: \(\left(c,v\right) = \left(3,9\right)\) The solution to the system of equations is \( c = 3 \) and \( v = 9 \). Therefore, the speed of the rowboat in still water is 9 km/h.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the speed of the rowboat in still water, we can start by determining the rowboat's speed against and with the current. Let's denote the speed of the rowboat in still water as \( r \) km/h and the speed of the current as \( c \) km/h. When rowing against the current, the effective speed becomes \( r - c \). Given that it took 3 hours to cover 18 km, we can set up the equation: \[ r - c = \frac{18}{3} = 6 \text{ km/h (1)} \] On the return trip with the current, the effective speed is \( r + c \). The time taken was \( 1 \frac{1}{2} \) hours (or \( 1.5 \) hours) for the same distance of 18 km, so we have: \[ r + c = \frac{18}{1.5} = 12 \text{ km/h (2)} \] Now we can solve these two equations (1) and (2): - From equation (1): \( r - c = 6 \) - From equation (2): \( r + c = 12 \) Adding both equations: \[ (r - c) + (r + c) = 6 + 12 \\ 2r = 18 \\ r = 9 \text{ km/h} \] Now, substitute \( r = 9 \) back into equation (1) to find \( c \): \[ 9 - c = 6 \\ c = 3 \text{ km/h} \] So, the speed of the rowboat in still water is **9 km/h**.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad