Pregunta
upstudy study bank question image url

\( \begin{array}{l} y=x^{2}(1+x)^{\frac{1}{2}} \\ u=\left(x^{2}\right), \quad v=(1+x)^{\frac{1}{2}} \\ \left.\frac{d u}{d i c}=2 x \quad=\frac{(1+x)^{2}}{d x c} x \quad t-\frac{1}{2}<1+x\right)^{-\frac{1}{2}} \\ \frac{1}{2}(1+x)^{-\frac{1}{2}} \\ u \frac{d v}{d x}+\frac{v d u}{d x} \\ \left(x^{2}\right)_{3} x+(1+x)^{\frac{1}{2}} 2 x \\ x^{3}+\frac{2 x}{\sqrt{1+} x} \end{array} \)

Ask by Gross Cruz. in Nigeria
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \frac{dy}{dx} = \frac{x^2}{2\sqrt{1 + x}} + 2x\sqrt{1 + x} \]

Solución

It looks like you're working through the differentiation of the function: \[ y = x^{2}(1+x)^{\frac{1}{2}} \] Let's walk through the differentiation process step-by-step using the **Product Rule**. The Product Rule states that if you have a function \( y = u \cdot v \), then its derivative is: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step 1: Identify \( u \) and \( v \) Let’s assign: \[ \begin{align*} u &= x^{2} \\ v &= (1 + x)^{\frac{1}{2}} \end{align*} \] ### Step 2: Compute \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Differentiate \( u \) and \( v \) with respect to \( x \): \[ \begin{align*} \frac{du}{dx} &= \frac{d}{dx} \left( x^{2} \right) = 2x \\ \frac{dv}{dx} &= \frac{d}{dx} \left( (1 + x)^{\frac{1}{2}} \right) = \frac{1}{2}(1 + x)^{-\frac{1}{2}} \cdot 1 = \frac{1}{2}(1 + x)^{-\frac{1}{2}} \end{align*} \] ### Step 3: Apply the Product Rule Substitute \( u \), \( \frac{du}{dx} \), \( v \), and \( \frac{dv}{dx} \) into the Product Rule formula: \[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \] Plugging in the values: \[ \frac{dy}{dx} = x^{2} \cdot \left( \frac{1}{2}(1 + x)^{-\frac{1}{2}} \right) + (1 + x)^{\frac{1}{2}} \cdot 2x \] ### Step 4: Simplify the Expression Let's simplify each term: 1. **First Term:** \[ x^{2} \cdot \frac{1}{2}(1 + x)^{-\frac{1}{2}} = \frac{x^{2}}{2 \sqrt{1 + x}} \] 2. **Second Term:** \[ (1 + x)^{\frac{1}{2}} \cdot 2x = 2x \sqrt{1 + x} \] Putting it all together: \[ \frac{dy}{dx} = \frac{x^{2}}{2 \sqrt{1 + x}} + 2x \sqrt{1 + x} \] ### Step 5: Combine the Terms (Optional) If you want to combine the two terms into a single fraction: \[ \frac{dy}{dx} = \frac{x^{2}}{2 \sqrt{1 + x}} + \frac{4x(1 + x)}{2 \sqrt{1 + x}} = \frac{x^{2} + 4x(1 + x)}{2 \sqrt{1 + x}} \] Simplify the numerator: \[ x^{2} + 4x(1 + x) = x^{2} + 4x + 4x^{2} = 5x^{2} + 4x \] So, the derivative becomes: \[ \frac{dy}{dx} = \frac{5x^{2} + 4x}{2 \sqrt{1 + x}} \] ### Final Answer \[ \boxed{ \frac{dy}{dx} = \frac{x^2}{2\,\sqrt{1 + x}} + 2x\,\sqrt{1 + x} } \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's kick off with a bit of historical context! The use of calculus to differentiate complex functions dates back to the work of Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century. They introduced not only the concept of derivatives but also laid the groundwork for understanding the relationship between a function and its rate of change. Mathematical notation has evolved since then, but the core principles remain integral to studying functions like the one you're working with! Now, for some real-world application! The differentiation of functions like \(y = x^2(1+x)^{1/2}\) doesn't just stay in the math classroom; it has practical uses in various fields like physics, engineering, and economics. For instance, in real-world modeling situations such as optimizing production in factories or predicting the trajectory of projectiles, finding the maximum or minimum values through derivatives can lead to improved efficiency and better decision-making. Who knew calculus could help you hit your targets both literally and figuratively?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad