Pregunta
upstudy study bank question image url

QUESTION 1 \( 1.1 \quad \) Solve for \( x \) : \( 1.1 .1 \quad(2 x-3)(x+7)=0 \)

Ask by Estrada Huff. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( x=-7 \) and \( x=1.5 \).

Solución

Solve the equation \( (2x-3)(x+7)=0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(\left(2x-3\right)\left(x+7\right)=0\) - step1: Separate into possible cases: \(\begin{align}&2x-3=0\\&x+7=0\end{align}\) - step2: Solve the equation: \(\begin{align}&x=\frac{3}{2}\\&x=-7\end{align}\) - step3: Rewrite: \(x_{1}=-7,x_{2}=\frac{3}{2}\) The solutions to the equation \( (2x-3)(x+7)=0 \) are \( x=-7 \) and \( x=\frac{3}{2} \) or \( x=1.5 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( (2x - 3)(x + 7) = 0 \), you can set each factor equal to zero. This gives us two equations to solve: \( 2x - 3 = 0 \) and \( x + 7 = 0 \). From \( 2x - 3 = 0 \), adding 3 to both sides, we get \( 2x = 3 \), which gives \( x = \frac{3}{2} \). From \( x + 7 = 0 \), subtracting 7 from both sides gives us \( x = -7 \). Thus, the solutions are \( x = \frac{3}{2} \) and \( x = -7 \). Now let's explore how this equation relates to real-world applications. In practical scenarios, equations like this can be used in economic modeling. For instance, if you’re looking at profit and loss in a business, the factors may represent different components of your revenue model, such as price per item or quantities sold. Setting these components to zero allows businesses to analyze break-even points and make informed decisions. If you’re ever faced with multiplying factors like this, remember a classic pitfall: don’t forget to check both possibilities when you break it down to zero. Many students often stop at one factor and miss the potential solutions from the other! Always simplify and consider all roots for a full understanding of the problem.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad