Consider the function \( f(x)=3 x^{2}-5 x-4 \) and complete parts (a) through (c). (a) Find \( f(a+h) \). (b) Find \( \frac{f(a+h)-f(a)}{h}, h \neq 0 \). (c) Find the instantaneous rate of change of \( f \) when \( a=6 \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the parts of the function \( f(x) = 3x^2 - 5x - 4 \), we proceed as follows: (a) To find \( f(a+h) \): \[ f(a+h) = 3(a+h)^2 - 5(a+h) - 4 \] Expanding this, we have: \[ f(a+h) = 3(a^2 + 2ah + h^2) - 5a - 5h - 4 \] \[ f(a+h) = 3a^2 + 6ah + 3h^2 - 5a - 5h - 4 \] (b) Next, we find \( \frac{f(a+h) - f(a)}{h} \) with \( h \neq 0 \): First, calculate \( f(a) \): \[ f(a) = 3a^2 - 5a - 4 \] Now substitute \( f(a) \) into the expression: \[ \frac{f(a+h) - f(a)}{h} = \frac{(3a^2 + 6ah + 3h^2 - 5a - 5h - 4) - (3a^2 - 5a - 4)}{h} \] Simplifying this gives: \[ \frac{6ah + 3h^2 - 5h}{h} = 6a + 3h - 5 \] (c) To find the instantaneous rate of change of \( f \) when \( a = 6 \): We use the derivative \( f'(x) \): First, compute \( f'(x) \): \[ f'(x) = \frac{d}{dx}(3x^2 - 5x - 4) = 6x - 5 \] Now evaluate at \( a = 6 \): \[ f'(6) = 6(6) - 5 = 36 - 5 = 31 \] Thus, the instantaneous rate of change of \( f \) when \( a = 6 \) is \( 31 \).
preguntas relacionadas
