Pregunta
upstudy study bank question image url

Consider the function \( f(x)=3 x^{2}-5 x-4 \) and complete parts (a) through (c). (a) Find \( f(a+h) \). (b) Find \( \frac{f(a+h)-f(a)}{h}, h \neq 0 \). (c) Find the instantaneous rate of change of \( f \) when \( a=6 \).

Ask by Ingram Barrett. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( f(a+h) = 3a^2 + 6ah + 3h^2 - 5a - 5h - 4 \) (b) \( \frac{f(a+h) - f(a)}{h} = 6a + 3h - 5 \) (c) The instantaneous rate of change of \( f \) when \( a = 6 \) is 31.

Solución

Alright, I need to solve the problem involving the function \( f(x) = 3x^2 - 5x - 4 \) for parts (a), (b), and (c). Let's tackle each part step by step. **Part (a): Find \( f(a+h) \).** First, I need to find the value of the function \( f \) at \( x = a + h \). The function is given by: \[ f(x) = 3x^2 - 5x - 4 \] So, substituting \( x = a + h \) into the function: \[ f(a+h) = 3(a+h)^2 - 5(a+h) - 4 \] Now, I'll expand \( (a+h)^2 \): \[ (a+h)^2 = a^2 + 2ah + h^2 \] Substituting this back into the equation: \[ f(a+h) = 3(a^2 + 2ah + h^2) - 5(a+h) - 4 \] Distribute the 3: \[ f(a+h) = 3a^2 + 6ah + 3h^2 - 5a - 5h - 4 \] So, the expression for \( f(a+h) \) is: \[ f(a+h) = 3a^2 + 6ah + 3h^2 - 5a - 5h - 4 \] **Part (b): Find \( \frac{f(a+h)-f(a)}{h}, h \neq 0 \).** Next, I need to find the difference quotient, which is the average rate of change of the function over the interval from \( a \) to \( a+h \). The formula is: \[ \frac{f(a+h) - f(a)}{h} \] From part (a), I have \( f(a+h) \). Now, I need to find \( f(a) \): \[ f(a) = 3a^2 - 5a - 4 \] Subtracting \( f(a) \) from \( f(a+h) \): \[ f(a+h) - f(a) = (3a^2 + 6ah + 3h^2 - 5a - 5h - 4) - (3a^2 - 5a - 4) \] Simplifying: \[ f(a+h) - f(a) = 3a^2 + 6ah + 3h^2 - 5a - 5h - 4 - 3a^2 + 5a + 4 \] Combine like terms: \[ f(a+h) - f(a) = 6ah + 3h^2 - 5h \] Now, divide by \( h \): \[ \frac{f(a+h) - f(a)}{h} = \frac{6ah + 3h^2 - 5h}{h} \] Factor out \( h \) from the numerator: \[ \frac{f(a+h) - f(a)}{h} = \frac{h(6a + 3h - 5)}{h} \] Cancel out \( h \) (since \( h \neq 0 \)): \[ \frac{f(a+h) - f(a)}{h} = 6a + 3h - 5 \] So, the difference quotient is: \[ \frac{f(a+h) - f(a)}{h} = 6a + 3h - 5 \] **Part (c): Find the instantaneous rate of change of \( f \) when \( a=6 \).** The instantaneous rate of change of a function at a point is given by the derivative of the function at that point. From part (b), the difference quotient is: \[ \frac{f(a+h) - f(a)}{h} = 6a + 3h - 5 \] To find the derivative, take the limit as \( h \) approaches 0: \[ f'(a) = \lim_{h \to 0} (6a + 3h - 5) \] Substituting \( a = 6 \): \[ f'(6) = 6(6) + 3(0) - 5 = 36 + 0 - 5 = 31 \] So, the instantaneous rate of change of \( f \) when \( a = 6 \) is: \[ f'(6) = 31 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the parts of the function \( f(x) = 3x^2 - 5x - 4 \), we proceed as follows: (a) To find \( f(a+h) \): \[ f(a+h) = 3(a+h)^2 - 5(a+h) - 4 \] Expanding this, we have: \[ f(a+h) = 3(a^2 + 2ah + h^2) - 5a - 5h - 4 \] \[ f(a+h) = 3a^2 + 6ah + 3h^2 - 5a - 5h - 4 \] (b) Next, we find \( \frac{f(a+h) - f(a)}{h} \) with \( h \neq 0 \): First, calculate \( f(a) \): \[ f(a) = 3a^2 - 5a - 4 \] Now substitute \( f(a) \) into the expression: \[ \frac{f(a+h) - f(a)}{h} = \frac{(3a^2 + 6ah + 3h^2 - 5a - 5h - 4) - (3a^2 - 5a - 4)}{h} \] Simplifying this gives: \[ \frac{6ah + 3h^2 - 5h}{h} = 6a + 3h - 5 \] (c) To find the instantaneous rate of change of \( f \) when \( a = 6 \): We use the derivative \( f'(x) \): First, compute \( f'(x) \): \[ f'(x) = \frac{d}{dx}(3x^2 - 5x - 4) = 6x - 5 \] Now evaluate at \( a = 6 \): \[ f'(6) = 6(6) - 5 = 36 - 5 = 31 \] Thus, the instantaneous rate of change of \( f \) when \( a = 6 \) is \( 31 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad