Pregunta
upstudy study bank question image url

Graph all vertical and horizontal asymptotes of the rational function. \[ f(x)=\frac{7}{-x^{2}-8} \]

Ask by Lynch Boone. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = \frac{7}{-x^{2}-8} \) has a horizontal asymptote at \( y = 0 \) and no vertical asymptotes.

Solución

Function by following steps: - step0: Find the vertical asymptotes: \(f\left(x\right)=\frac{7}{-x^{2}-8}\) - step1: The function has no vertical asymptote: \(\textrm{No vertical asymptotes}\) Find the horizontal asymptotes of \( f(x)=\frac{7}{-x^{2}-8} \). Function by following steps: - step0: Find the horizontal asymptotes: \(f\left(x\right)=\frac{7}{-x^{2}-8}\) - step1: Evaluate the limits \(\lim _{x\rightarrow +\infty}\left(f\left(x\right)\right)\) and \(\lim _{x\rightarrow -\infty}\left(f\left(x\right)\right):\) \(\begin{align}&\lim _{x\rightarrow +\infty}\left(\frac{7}{-x^{2}-8}\right)\\&\lim _{x\rightarrow -\infty}\left(\frac{7}{-x^{2}-8}\right)\end{align}\) - step2: Calculate: \(\begin{align}&0\\&0\end{align}\) - step3: The finite values are horizontal asymptotes: \(\begin{align}&f\left(x\right)=0\end{align}\) To analyze the rational function \[ f(x) = \frac{7}{-x^{2}-8} \] we can determine the asymptotes as follows: 1. **Horizontal Asymptotes**: - The horizontal asymptote is found by examining the behavior of the function as \(x\) approaches infinity or negative infinity. For rational functions, if the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is \(y = 0\). - In this case, the degree of the numerator (which is 0) is less than the degree of the denominator (which is 2). Therefore, the horizontal asymptote is: \[ y = 0 \] 2. **Vertical Asymptotes**: - Vertical asymptotes occur where the denominator is zero (and the numerator is not zero at those points). We set the denominator equal to zero: \[ -x^{2} - 8 = 0 \] This simplifies to: \[ -x^{2} = 8 \quad \Rightarrow \quad x^{2} = -8 \] Since \(x^{2} = -8\) has no real solutions (as the square of a real number cannot be negative), there are no vertical asymptotes. ### Summary of Asymptotes: - **Horizontal Asymptote**: \(y = 0\) - **Vertical Asymptotes**: None Thus, the function has a horizontal asymptote at \(y = 0\) and no vertical asymptotes.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the vertical and horizontal asymptotes of the function \( f(x) = \frac{7}{-x^{2}-8} \), let's start with the vertical asymptotes. Vertical asymptotes occur when the denominator equals zero. Setting the denominator to zero: \[ -x^{2} - 8 = 0 \implies -x^{2} = 8 \implies x^{2} = -8 \] Since \( x^{2} = -8 \) has no real solutions (as you can't take the square root of a negative number), there are no vertical asymptotes for this function. Next, for horizontal asymptotes, we consider the degrees of the numerator and the denominator. The degree of the numerator (which is a constant, 7) is 0, and the degree of the denominator (which is a quadratic, \(-x^2 - 8\)) is 2. For rational functions, if the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is at \( y = 0 \). So, in summary: - **Vertical Asymptotes**: None - **Horizontal Asymptote**: \( y = 0 \)

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad