Pregunta
upstudy study bank question image url

\begin{tabular}{l}\( \begin{array}{l}a+b+c \\ \frac{a+b+c}{b+c}=-1\end{array} \) \\ Determine the \( 50^{\text {th }} \) term of the above pattern: \\ \hline\end{tabular}

Ask by Vaughan Coles. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The 50th term of the pattern is -100.

Solución

To solve the problem, we need to analyze the given equations and find a pattern that allows us to determine the \( 50^{\text{th}} \) term. 1. **Extract Known Conditions:** - We have two equations: 1. \( a + b + c \) 2. \( \frac{a + b + c}{b + c} = -1 \) 2. **Solve the Second Equation:** - From the second equation, we can rewrite it as: \[ a + b + c = - (b + c) \] - This simplifies to: \[ a + b + c = -b - c \] - Rearranging gives: \[ a + 2b + 2c = 0 \] - Thus, we can express \( a \) in terms of \( b \) and \( c \): \[ a = -2b - 2c \] 3. **Substituting Back:** - Now we can substitute \( a \) back into the first equation: \[ (-2b - 2c) + b + c = -b - c \] - Simplifying this gives: \[ -b - c = -b - c \] - This is always true, indicating that \( a, b, c \) can take on various values as long as they satisfy the relationship derived. 4. **Finding the Pattern:** - The equations suggest a linear relationship among \( a, b, c \). If we let \( b = n \) and \( c = m \), we can express \( a \) as: \[ a = -2n - 2m \] - The terms \( a, b, c \) can be represented in a sequence based on \( n \) and \( m \). 5. **Determining the \( 50^{\text{th}} \) Term:** - If we assume a simple pattern where \( a, b, c \) are integers, we can generate terms based on \( n \) and \( m \). - For example, if we let \( n \) and \( m \) increase sequentially, we can find the \( 50^{\text{th}} \) term by substituting \( n = 50 \) and \( m = 50 \) into our expressions. 6. **Calculating the \( 50^{\text{th}} \) Term:** - Let’s calculate: \[ a = -2(50) - 2(50) = -100 - 100 = -200 \] - Thus, the \( 50^{\text{th}} \) term can be represented as: \[ a + b + c = -200 + 50 + 50 = -100 \] Therefore, the \( 50^{\text{th}} \) term of the pattern is \(-100\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( \frac{a+b+c}{b+c}=-1 \), we start by manipulating the equation. 1. Multiply both sides by \( b+c \) (assuming \( b+c \neq 0 \)): \[ a+b+c = - (b+c) \] 2. This simplifies to: \[ a+b+c = -b - c \] 3. Rearranging gives us: \[ a + 2b + 2c = 0 \] Next, we can express \( c \) in terms of \( a \) and \( b \): \[ c = -\frac{a + 2b}{2} \] Next, let's substitute values into the expression of \( a + b + c \): \[ a + b + c = a + b - \frac{a + 2b}{2} \] \[ = a + b - \frac{a}{2} - b = \frac{a}{2} + b - b = \frac{a}{2} \] Thus, the first term is \( \frac{a}{2} \). Now we can observe that the sequence involves \( a, b, c \). If we assume a simple increment pattern, such as \( a_n = n, b_n = n+1, c_n = n+2 \), continuing like this will give terms like: 1. \( 1+2+3 = 6 \) 2. \( 2+3+4 = 9 \) 3. \( 3+4+5 = 12 \) This continues with a pattern \( 3, 6, 9, \ldots \) which is an arithmetic sequence with a difference of \( 3 \). To find the \( 50^{\text{th}} \) term: \[ T_n = 3n \] Thus, \[ T_{50} = 3 \times 50 = 150 \] The \( 50^{\text{th}} \) term of the pattern is therefore \( 150 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad