Pregunta
upstudy study bank question image url

15.37 For a 0.45 M solution of \( \mathrm{Na}_{2} \mathrm{SO}_{3} \), do the following: (a) Identify the major species. (b) Identify the equilibrium that determines the pH. (c) Compute the pH .

Ask by Ramirez Johnson. in Canada
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**(a) Major Species:** - Sodium ions (\(\ce{Na^+}\)) at 0.90 M - Sulfite ions (\(\ce{SO3^{2-}}\)) at 0.45 M **(b) pH-Determining Equilibrium:** \[ \ce{SO3^{2-} + H2O <=> HSO3^- + OH^-} \] **(c) pH Calculation:** The pH of the solution is approximately **10.93**.

Solución

**(a) Identify the major species** When \(\ce{Na2SO3}\) dissolves, it dissociates completely into sodium and sulfite ions: \[ \ce{Na2SO3 -> 2Na^+ + SO3^{2-}} \] Thus, the major species in a 0.45 M \(\ce{Na2SO3}\) solution are: - \(\ce{Na^+}\) (concentration: \(2 \times 0.45 = 0.90\) M) - \(\ce{SO3^{2-}}\) (concentration: 0.45 M) **(b) Identify the equilibrium that determines the pH** The \(\ce{SO3^{2-}}\) ion is the conjugate base of \(\ce{HSO3^-}\) (which comes from the diprotic acid \(\ce{H2SO3}\)). In water, \(\ce{SO3^{2-}}\) undergoes hydrolysis: \[ \ce{SO3^{2-} + H2O <=> HSO3^- + OH^-} \] This equilibrium is responsible for generating \(\ce{OH^-}\) and, hence, making the solution basic. It is the equilibrium that determines the pH. **(c) Compute the pH** 1. **Determine the base ionization constant, \(K_b\):** The hydrolysis reaction for \(\ce{SO3^{2-}}\) has an equilibrium constant \(K_b\) related to the second acid dissociation constant \(K_{a2}\) of \(\ce{H2SO3}\) by: \[ K_b = \frac{K_w}{K_{a2}} \] where \(K_w = 1.0 \times 10^{-14}\) and typically \(pK_{a2} \approx 7.2\), giving: \[ K_{a2} = 10^{-7.2} \approx 6.31 \times 10^{-8}. \] Then, \[ K_b = \frac{1.0 \times 10^{-14}}{6.31 \times 10^{-8}} \approx 1.585 \times 10^{-7}. \] 2. **Set up the hydrolysis equilibrium:** Let \(x\) be the amount of \(\ce{SO3^{2-}}\) that reacts: \[ \begin{array}{rcl} \ce{SO3^{2-}} & \ce{+ H2O} & \ce{<=> HSO3^- + OH^-} \\ \text{Initial:} & 0.45 & 0 \quad\quad 0 \\ \text{Change:} & -x & +x \quad +x \\ \text{Equilibrium:} & 0.45 - x & x \quad\quad x \\ \end{array} \] The equilibrium expression is: \[ K_b = \frac{[ \ce{HSO3^-} ][ \ce{OH^-} ]}{[ \ce{SO3^{2-}} ]} = \frac{x^2}{0.45 - x}. \] 3. **Assume \(x \ll 0.45\) and solve for \(x\):** Under the assumption, \(0.45 - x \approx 0.45\), so: \[ x^2 \approx K_b \times 0.45. \] Substituting the value of \(K_b\): \[ x^2 \approx 1.585 \times 10^{-7} \times 0.45 \approx 7.1325 \times 10^{-8}. \] Taking the square root: \[ x \approx \sqrt{7.1325 \times 10^{-8}} \approx 8.45 \times 10^{-4}. \] This \(x\) represents the equilibrium concentration of \(\ce{OH^-}\). 4. **Calculate the pOH and pH:** \[ \text{pOH} = -\log [\ce{OH^-}] = -\log (8.45 \times 10^{-4}) \approx 3.07. \] Finally, the pH is: \[ \text{pH} = 14 - \text{pOH} \approx 14 - 3.07 \approx 10.93. \] **Answer Summary:** - Major species: \(\ce{Na^+}\) (0.90 M) and \(\ce{SO3^{2-}}\) (0.45 M). - pH-determining equilibrium: \(\ce{SO3^{2-} + H2O <=> HSO3^- + OH^-}\). - The pH of the solution is approximately \(10.93\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

In a 0.45 M solution of \( \mathrm{Na}_{2} \mathrm{SO}_{3} \), the major species present are sodium ions (\( \mathrm{Na}^+ \)) and sulfite ions (\( \mathrm{SO}_{3}^{2-} \)). Sodium sulfite dissociates in water, releasing these ions, but the sodium ions do not affect the pH significantly as they are neutral. The equilibrium that primarily determines the pH in this solution involves the sulfite ion (\( \mathrm{SO}_{3}^{2-} \)), which can undergo hydrolysis to form hydroxide ions (\( \mathrm{OH}^- \)). The reaction can be represented as: \[ \mathrm{SO}_{3}^{2-} + \mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{HSO}_3^{-} + \mathrm{OH}^- \] The creation of hydroxide ions makes the solution basic, leading to a higher pH. To compute the pH, we first find the pOH using the equilibrium expression and the known concentration of sulfite ions. The base dissociation constant (\( K_b \)) for the reaction can be calculated from the \( K_a \) of its conjugate acid, \( \mathrm{HSO}_3^- \). Assuming \( K_b \) is known or can be calculated from \( K_w/K_a \), we can set up an ICE table and solve for the concentration of \( \mathrm{OH}^- \). Once \( \mathrm{pOH} \) is calculated, use the relationship \( \mathrm{pH} + \mathrm{pOH} = 14 \) to find the pH.

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad