Pregunta
upstudy study bank question image url

\( \quad=2 x-4 x^{2} y+7 x y-14 y^{2} \) \( =2 x^{6}+3 x^{3} y-14 y^{2} \) SQUARING A BINOMIAL (REVISION OF GRADE 9)

Ask by Mccarthy Watson. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To square a binomial, use the formula \( (a + b)^2 = a^2 + 2ab + b^2 \). For example, squaring \( (2x - 4y) \) gives \( 4x^2 - 16xy + 16y^2 \).

Solución

To square a binomial, we use the formula: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In this case, it seems you have two expressions, but they are not in the form of a binomial. Let's clarify the expressions you provided: 1. \( 2x - 4x^2y + 7xy - 14y^2 \) 2. \( 2x^6 + 3x^3y - 14y^2 \) If you want to square a binomial, we need to identify a binomial first. Let's assume you want to square the first expression as a binomial. ### Step 1: Identify the Binomial Let's consider the first expression \( 2x - 4x^2y + 7xy - 14y^2 \). We can group terms to form a binomial. However, it seems more complex than a simple binomial. ### Step 2: Simplify the Expression Let's simplify the first expression: \[ 2x + (7xy - 4x^2y) - 14y^2 \] This doesn't form a clear binomial. ### Step 3: Squaring a Binomial Example If we take a simple binomial, for example, \( (a + b) \), squaring it would look like this: Let’s say \( a = 2x \) and \( b = -4y \): \[ (2x - 4y)^2 = (2x)^2 + 2(2x)(-4y) + (-4y)^2 \] Calculating each term: 1. \( (2x)^2 = 4x^2 \) 2. \( 2(2x)(-4y) = -16xy \) 3. \( (-4y)^2 = 16y^2 \) Putting it all together: \[ (2x - 4y)^2 = 4x^2 - 16xy + 16y^2 \] ### Conclusion If you have a specific binomial you want to square, please provide it, and I can help you with that. If you want to simplify or manipulate the expressions you provided, please clarify your request!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the square of a binomial follows the formula \( (a+b)^2 = a^2 + 2ab + b^2 \)? This formula not only simplifies calculations but also helps you easily expand expressions in algebra. For example, if you had \( (2x - 3)^2 \), you'd square the first term to get \( 4x^2 \), double the product of the two terms for \( -12x \), and square the last term to produce \( 9 \). Voila! When dealing with expressions like \( 2x - 4x^2 + 7xy - 14y^2 \), it's crucial to be careful about combining like terms! One common mistake is to incorrectly distribute or forget to account for negative signs during expansion. To avoid this, always rewrite the expression neatly and double-check each step. This way, your algebra game stays strong and clean!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad