ction: (2) \( \frac{y}{8}+\frac{1}{2} y \) (3) \( \frac{1}{4} x-1 \frac{1}{2} \) (5) \( 2-\frac{1}{4} p-\frac{3}{5} \) (6) \( a+\frac{1}{4} a-1 \frac{1}{6} \) (8) \( \frac{2}{3} k-2 \div \frac{14}{k} \) (9) \( -1 \frac{1}{3} x-\frac{2}{7} \div \frac{20}{21 x} \) (2) \( \frac{2 x-1}{4}+\frac{x+2}{2} \) (3) \( 2+\frac{2 x+3}{2} \) (5) \( \frac{1}{6} a-\frac{a-1}{8} \) (6) \( \frac{2 x}{3}-\frac{3 x}{2}-\frac{x+1}{6} \) (8) \( 2-\frac{x-4}{4}-\frac{1}{8}(x+1) \) (9) \( \frac{x-3}{3}+x-3 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
When it comes to fractions and algebra, understanding how to combine like terms is crucial. For instance, in the expression \( \frac{y}{8} + \frac{1}{2} y \), you can convert \( \frac{1}{2} y \) to eighths, yielding \( \frac{4}{8} y \). So, it simplifies to \( \frac{5}{8} y \) - a nifty way to present your solution neatly! Feeling stuck? A common mistake when solving equations with fractions is forgetting to find a common denominator. Take the expression \( \frac{1}{4} x - 1 \frac{1}{2} \). It’s easy to mix up the values—ensure all fractions have the same bottom number before combining! It’s like trying to mix up different flavors without knowing how they blend; you’ve got to have a common taste!
