Pregunta
upstudy study bank question image url

\( \left.\begin{array}{l}\text { Question } \\ \text { Matrix } A \text { is defined by }\left[\begin{array}{ccc}1 & 2 & -7 \\ -3 & -2 & 6 \\ -9 & -1 & 0\end{array}\right] \text {. Find the inverse of this matrix if it exists. } \\ \text { Provide your answer below: } \\ \text { Q } \\ \square \square \square \square \square \square \\ \square \\ \square\end{array}\right] \)

Ask by Welch Patel. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inverse of matrix \( A \) is: \[ A^{-1} = \left[\begin{array}{ccc} 2 & \frac{7}{3} & -\frac{2}{3} \\ -18 & -21 & 5 \\ -5 & -\frac{17}{3} & \frac{4}{3} \end{array}\right] \]

Solución

Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{lll}{1}&{2}&{-7}\\{-3}&{-2}&{6}\\{-9}&{-1}&{0}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{lll|lll}{1}&{2}&{-7}&{1}&{0}&{0}\\{-3}&{-2}&{6}&{0}&{1}&{0}\\{-9}&{-1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{lll|lll}{1}&{2}&{-7}&{1}&{0}&{0}\\{0}&{4}&{-15}&{3}&{1}&{0}\\{-9}&{-1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{lll|lll}{1}&{2}&{-7}&{1}&{0}&{0}\\{0}&{4}&{-15}&{3}&{1}&{0}\\{0}&{17}&{-63}&{9}&{0}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{lll|lll}{1}&{2}&{-7}&{1}&{0}&{0}\\{0}&{1}&{-\frac{15}{4}}&{\frac{3}{4}}&{\frac{1}{4}}&{0}\\{0}&{17}&{-63}&{9}&{0}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{lll|lll}{1}&{2}&{-7}&{1}&{0}&{0}\\{0}&{1}&{-\frac{15}{4}}&{\frac{3}{4}}&{\frac{1}{4}}&{0}\\{0}&{0}&{\frac{3}{4}}&{-\frac{15}{4}}&{-\frac{17}{4}}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{lll|lll}{1}&{2}&{-7}&{1}&{0}&{0}\\{0}&{1}&{-\frac{15}{4}}&{\frac{3}{4}}&{\frac{1}{4}}&{0}\\{0}&{0}&{1}&{-5}&{-\frac{17}{3}}&{\frac{4}{3}}\end{array}\right]\) - step7: Simplify the row: \(\left[\begin{array}{lll|lll}{1}&{2}&{-7}&{1}&{0}&{0}\\{0}&{1}&{0}&{-18}&{-21}&{5}\\{0}&{0}&{1}&{-5}&{-\frac{17}{3}}&{\frac{4}{3}}\end{array}\right]\) - step8: Simplify the row: \(\left[\begin{array}{lll|lll}{1}&{2}&{0}&{-34}&{-\frac{119}{3}}&{\frac{28}{3}}\\{0}&{1}&{0}&{-18}&{-21}&{5}\\{0}&{0}&{1}&{-5}&{-\frac{17}{3}}&{\frac{4}{3}}\end{array}\right]\) - step9: Simplify the row: \(\left[\begin{array}{lll|lll}{1}&{0}&{0}&{2}&{\frac{7}{3}}&{-\frac{2}{3}}\\{0}&{1}&{0}&{-18}&{-21}&{5}\\{0}&{0}&{1}&{-5}&{-\frac{17}{3}}&{\frac{4}{3}}\end{array}\right]\) - step10: Write the right half matrix: \(\left[\begin{array}{lll}{2}&{\frac{7}{3}}&{-\frac{2}{3}}\\{-18}&{-21}&{5}\\{-5}&{-\frac{17}{3}}&{\frac{4}{3}}\end{array}\right]\) The inverse of matrix \( A \) is given by: \[ A^{-1} = \left[\begin{array}{ccc} 2 & \frac{7}{3} & -\frac{2}{3} \\ -18 & -21 & 5 \\ -5 & -\frac{17}{3} & \frac{4}{3} \end{array}\right] \] This matrix is the inverse of the original matrix \( A \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the inverse of matrix \( A = \left[\begin{array}{ccc} 1 & 2 & -7 \\ -3 & -2 & 6 \\ -9 & -1 & 0 \end{array}\right] \), we first calculate the determinant. If the determinant is non-zero, the inverse exists. Calculating the determinant gives us \( \text{det}(A) = 1( (-2)(0) - (6)(-1) ) - 2( (-3)(0) - (6)(-9) ) + (-7)( (-3)(-1) - (-2)(-9) ) = 0 + 108 - 63 = 45 \). Since the determinant is 45 (non-zero), the inverse exists! Now, you can find the inverse using the formula \( A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \), where \(\text{adj}(A)\) is the adjugate of \( A \). After a bit of calculation, you'll find that: \( A^{-1} = \frac{1}{45}\left[\begin{array}{ccc} 12 & -3 & 0 \\ 6 & 1 & 3 \\ -1 & -2 & -1 \end{array}\right] \). So, there you have it! Keep your mathematical cape on; you’ve just unlocked the inverse superhero powers! Want a fun fact? The use of matrices dates back thousands of years to ancient China and Babylon. Their roots lie deep within history, where they were employed to solve systems of equations and even to account for land measurements! Fast forward to today, and they’re integral in computer graphics, algorithms, and even machine learning! Who knew such a small array of numbers could hold immense power, right?

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad