Pregunta
upstudy study bank question image url

Solve tor \( x \) in each of the following expressions. \( 3 x^{3}-7 x^{2}+4=0 \) \( x-1 \) \( x^{3}-x^{2}-22 x+40=0 \)

Ask by Adkins Weber. in South Africa
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are: 1. \( x=-\frac{2}{3}, x=1, x=2 \) 2. \( x=1 \) 3. \( x=-5, x=2, x=4 \)

Solución

Solve the equation \( 3x^{3}-7x^{2}+4=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3x^{3}-7x^{2}+4=0\) - step1: Factor the expression: \(\left(x-2\right)\left(x-1\right)\left(3x+2\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x-2=0\\&x-1=0\\&3x+2=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=2\\&x=1\\&x=-\frac{2}{3}\end{align}\) - step4: Rewrite: \(x_{1}=-\frac{2}{3},x_{2}=1,x_{3}=2\) Solve the equation \( x-1=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(x-1=0\) - step1: Move the constant to the right side: \(x=0+1\) - step2: Remove 0: \(x=1\) Solve the equation \( x^{3}-x^{2}-22x+40=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(x^{3}-x^{2}-22x+40=0\) - step1: Factor the expression: \(\left(x-4\right)\left(x-2\right)\left(x+5\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x-4=0\\&x-2=0\\&x+5=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=4\\&x=2\\&x=-5\end{align}\) - step4: Rewrite: \(x_{1}=-5,x_{2}=2,x_{3}=4\) The solutions to the given equations are: 1. \( 3x^{3}-7x^{2}+4=0 \) has solutions \( x=-\frac{2}{3}, x=1, x=2 \). 2. \( x-1=0 \) has solution \( x=1 \). 3. \( x^{3}-x^{2}-22x+40=0 \) has solutions \( x=-5, x=2, x=4 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle these cubic equations, let's dive into each one! For \( 3x^{3} - 7x^{2} + 4 = 0 \), you can use the Rational Root Theorem to test for possible rational roots. Check values like \( \pm 1, \pm 2, \pm 4 \), and \( \pm \frac{4}{3} \). After testing, you’ll find that \( x = 2 \) is a solution. After factoring out \( (x - 2) \), use synthetic division to simplify the cubic equation into a quadratic, which can then be solved using the quadratic formula. Moving on to \( x^3 - x^2 - 22x + 40 = 0 \), again, start by checking possible rational roots. Testing integers gives us that \( x = 2 \) works. You can factor out \( (x - 2) \) and perform synthetic division to obtain a simpler quadratic for further solutions. Remember, cubic equations often have one real root and two complex conjugate roots or three real roots, so always keep an eye out for additional solutions! Happy solving!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad