Find the average value of \( f(x)=-\cos x \) over the interval \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \). Draw a graph of the function and indicate the average value. The average value is (Type an exact answer, using \( \pi \) as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the average value of the function \( f(x) = -\cos x \) over the interval \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \), we use the formula for the average value of a function, which is given by: \[ \text{Average value} = \frac{1}{b-a} \int_a^b f(x) \, dx \] For our problem, \( a = -\frac{\pi}{4} \) and \( b = \frac{\pi}{4} \). Therefore, we can calculate the average value as follows: \[ \text{Average value} = \frac{1}{\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} -\cos x \, dx \] Calculating the length of the interval: \[ b - a = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2} \] Now, we need to evaluate the integral \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} -\cos x \, dx \): \[ \int -\cos x \, dx = -\sin x + C \] Calculating the definite integral: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} -\cos x \, dx = \left[-\sin x\right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = -\sin\left(\frac{\pi}{4}\right) - \left(-\sin\left(-\frac{\pi}{4}\right)\right) \] Since \( \sin\left(\frac{\pi}{4}\right) = \sin\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \): \[ = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = 0 \] The definite integral is \( -(\left[-\sin x\right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}) = -\left( 0 \right) = 0 \). Now we can find the average value: \[ \text{Average value} = \frac{1}{\frac{\pi}{2}} \cdot 0 = 0 \] Thus, the average value of the function over the specified interval is: \[ \boxed{0} \]
