\[ -x^{2}+6 x-3=0 \] INSTRUCTION: Round your answers to two decimal places. Answer: \( x=\square \) or \( x=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the quadratic equation \(-x^{2}+6x-3=0\), we can rearrange it into the standard form \(x^{2}-6x+3=0\). Using the quadratic formula \(x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}\), where \(a=1\), \(b=-6\), and \(c=3\), we get: 1. Calculate the determinant: \(b^2 - 4ac = (-6)^2 - 4(1)(3) = 36 - 12 = 24\) 2. Substitute the values in the formula: \(x=\frac{-(-6)\pm\sqrt{24}}{2(1)} = \frac{6\pm 2\sqrt{6}}{2} = 3\pm \sqrt{6}\) 3. Evaluating \(\sqrt{6} \approx 2.45\): This gives us \(x \approx 3 + 2.45 = 5.45\) and \(x \approx 3 - 2.45 = 0.55\). Thus, rounding to two decimal places, the solutions are: \( x=5.45 \) or \( x=0.55 \).
