Pregunta
upstudy study bank question image url

Determine the domain and range of the polynomial function \( f(x)=-x^{4}+8 x^{2}-10 \) Domain: All Real Numbers: Range: \( -10 \leq y \leq 6 \) Domain: All Real Numbers; Range: All Real Numbers Domain: All Real Numbers; Range: \( y \leq 6 \) Domain: \( -3 \leq x \leq 3 \); Range: \( -10 \leq y \leq 6 \)

Ask by Chang Craig. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Domain: All Real Numbers; Range: \( -10 \leq y \leq 6 \)

Solución

To determine the domain and range of the polynomial function \( f(x) = -x^{4} + 8x^{2} - 10 \), we will analyze the function step by step. ### Step 1: Determine the Domain The domain of a polynomial function is always all real numbers because polynomials are defined for every real value of \( x \). Therefore, the domain of \( f(x) \) is: \[ \text{Domain: All Real Numbers} \] ### Step 2: Determine the Range To find the range, we need to analyze the behavior of the function. 1. **Identify the type of polynomial**: The function \( f(x) \) is a quartic polynomial (degree 4) with a leading coefficient of -1, which means it opens downwards. 2. **Find the critical points**: We will find the derivative of \( f(x) \) and set it to zero to find the critical points. \[ f'(x) = \frac{d}{dx}(-x^{4} + 8x^{2} - 10) = -4x^{3} + 16x \] Setting the derivative equal to zero: \[ -4x^{3} + 16x = 0 \] Factoring out common terms: \[ -4x(x^{2} - 4) = 0 \] This gives us: \[ x = 0, \quad x^{2} - 4 = 0 \implies x = 2, \quad x = -2 \] So, the critical points are \( x = -2, 0, 2 \). 3. **Evaluate \( f(x) \) at the critical points**: \[ f(-2) = -(-2)^{4} + 8(-2)^{2} - 10 = -16 + 32 - 10 = 6 \] \[ f(0) = -0^{4} + 8(0)^{2} - 10 = -10 \] \[ f(2) = -(2)^{4} + 8(2)^{2} - 10 = -16 + 32 - 10 = 6 \] 4. **Determine the maximum and minimum values**: The maximum value of \( f(x) \) occurs at \( x = -2 \) and \( x = 2 \), where \( f(x) = 6 \). The minimum value occurs at \( x = 0 \), where \( f(x) = -10 \). ### Conclusion The range of \( f(x) \) is from the minimum value to the maximum value: \[ \text{Range: } -10 \leq y \leq 6 \] ### Final Answer - Domain: All Real Numbers - Range: \( -10 \leq y \leq 6 \) Thus, the correct option is: **Domain: All Real Numbers; Range: \( -10 \leq y \leq 6 \)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When it comes to polynomial functions, the domain is always all real numbers since you can input any value for \( x \). However, when it comes to the range, we need to analyze the function thoroughly. Given that \( f(x) = -x^{4} + 8x^{2} - 10 \), you’ll find that the highest point, or maximum, occurs at \( y = 6 \), and the lowest point approaches negative infinity. So, the range is \( y \leq 6 \). To dive a little deeper, you can find the maximum value by inspecting critical points through calculus or simply by factoring it into \( f(x) = -(x^2 - 4)^2 + 6 \). Here, it’s clear that the vertex form shows a peak at \( y = 6 \) while revealing that the function opens downwards. Plus, you can verify the turning points by finding the derivative and setting it to zero!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad