Pregunta
upstudy study bank question image url

\[ x=3 y=2 \] 20 나nory 2023 Home wark Given \( 2 \operatorname{sen} 2 \sin x-1=0, x \in=\left[0 \cdot 90^{\circ}\right] \) Crialore in tamat fr (2) \( 1-\sin ^{2} x \) (2) \( 1-\cos ^{2} x \) (4) \( \sin ^{2} x \) (S) \( \cos ^{2} x \) (4) Cithoar winy o Golculans wholis the easuer \( \sin ^{2} x+\cos ^{2} x=? \)

Ask by Wheeler Pritchard. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions for \( x \) are \( 15^\circ \) and \( 75^\circ \). Additionally, \( \sin^2 x + \cos^2 x = 1 \).

Solución

Let's break down the problem step by step. ### Given Equation We have the equation: \[ 2 \sin 2x - 1 = 0 \] ### Step 1: Solve for \( \sin 2x \) First, we can isolate \( \sin 2x \): \[ 2 \sin 2x = 1 \] \[ \sin 2x = \frac{1}{2} \] ### Step 2: Find \( 2x \) Next, we need to find the angles where \( \sin 2x = \frac{1}{2} \). The general solutions for \( \sin \theta = \frac{1}{2} \) are: \[ \theta = 30^\circ + k \cdot 360^\circ \quad \text{and} \quad \theta = 150^\circ + k \cdot 360^\circ \] for any integer \( k \). ### Step 3: Solve for \( x \) Since \( 2x = 30^\circ \) or \( 2x = 150^\circ \), we can divide by 2 to find \( x \): 1. \( 2x = 30^\circ \) gives \( x = 15^\circ \) 2. \( 2x = 150^\circ \) gives \( x = 75^\circ \) ### Step 4: Check the interval We need to ensure that \( x \) is within the interval \( [0, 90^\circ] \). Both \( 15^\circ \) and \( 75^\circ \) are valid solutions. ### Step 5: Evaluate \( \sin^2 x + \cos^2 x \) Now, we need to calculate \( \sin^2 x + \cos^2 x \). According to the Pythagorean identity: \[ \sin^2 x + \cos^2 x = 1 \] ### Summary of Results 1. The solutions for \( x \) are \( 15^\circ \) and \( 75^\circ \). 2. The value of \( \sin^2 x + \cos^2 x \) is: \[ \sin^2 x + \cos^2 x = 1 \] Thus, the final answer is: \[ \sin^2 x + \cos^2 x = 1 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's break down the trigonometric equation \( 2 \sin^2 x - 1 = 0 \). By rearranging it, we can find that \( \sin^2 x = \frac{1}{2} \), which means that \( \sin x = \pm \frac{\sqrt{2}}{2} \). This implies that \( x \) can take the values of \( 45^{\circ} \) and \( 135^{\circ} \) in the specified range of \( [0, 90^{\circ}] \), but since \( 135^{\circ} \) exceeds this interval, the valid solution is \( x = 45^{\circ} \). A fun fact about trigonometric identities is that \( \sin^2 x + \cos^2 x = 1 \), which is known as the Pythagorean identity! This means that no matter what angle you choose, squaring both the sine and cosine of that angle and adding them together will always give you 1! It's like a magical shortcut in trigonometry. To do some additional practice, you might explore how to derive the unit circle. Understanding the unit circle not only visually represents sine and cosine values for different angles but also lays down the groundwork for advanced topics in trigonometry. Look for engaging resources, like interactive apps, to help solidify this knowledge!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad