Pregunta
upstudy study bank question image url

Line \( P \) passes through \( (-2,5) \) and \( (4,-7) \). Write an equation for the line that passes through \( (2,9) \) and is perpendicular to line \( P \). Leave in slope-intercept form.

Ask by Bradley Ramos. in the United States
Nov 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = \frac{1}{2}x + 8 \).

Solución

To find the equation of the line that is perpendicular to line \( P \) and passes through the point \( (2,9) \), we first need to determine the slope of line \( P \). 1. **Calculate the slope of line \( P \)**: The slope \( m \) of a line passing through two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] For the points \( (-2, 5) \) and \( (4, -7) \): \[ m_P = \frac{-7 - 5}{4 - (-2)} = \frac{-12}{6} = -2 \] 2. **Find the slope of the perpendicular line**: The slope of a line that is perpendicular to another line is the negative reciprocal of the original line's slope. Therefore, the slope \( m_{\perp} \) of the line we want is: \[ m_{\perp} = -\frac{1}{m_P} = -\frac{1}{-2} = \frac{1}{2} \] 3. **Use the point-slope form to find the equation**: We can use the point-slope form of the equation of a line, which is: \[ y - y_1 = m(x - x_1) \] where \( (x_1, y_1) \) is the point through which the line passes, and \( m \) is the slope. Here, we have the point \( (2, 9) \) and the slope \( \frac{1}{2} \): \[ y - 9 = \frac{1}{2}(x - 2) \] 4. **Simplify to slope-intercept form**: Distributing the slope on the right side: \[ y - 9 = \frac{1}{2}x - 1 \] Now, add 9 to both sides: \[ y = \frac{1}{2}x - 1 + 9 \] \[ y = \frac{1}{2}x + 8 \] Thus, the equation of the line that passes through \( (2, 9) \) and is perpendicular to line \( P \) is: \[ \boxed{y = \frac{1}{2}x + 8} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the slope of line \( P \), we calculate it using the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Substituting the given points \( (-2, 5) \) and \( (4, -7) \): \[ m_P = \frac{-7 - 5}{4 - (-2)} = \frac{-12}{6} = -2 \] The slope of line \( P \) is \( -2 \). The slope of a line perpendicular to line \( P \) is the negative reciprocal of \( -2 \), which is \( \frac{1}{2} \). Now, we use the point-slope form of the equation of a line, which is: \[ y - y_1 = m(x - x_1) \] Using the point \( (2, 9) \) and slope \( \frac{1}{2} \): \[ y - 9 = \frac{1}{2}(x - 2) \] Expanding and simplifying: \[ y - 9 = \frac{1}{2}x - 1 \] \[ y = \frac{1}{2}x + 8 \] Thus, the equation of the line that passes through \( (2, 9) \) and is perpendicular to line \( P \) is: \[ y = \frac{1}{2}x + 8 \] First additional information: The concept of perpendicular lines is a foundational element in geometry, intertwining slopes, angles, and even graphing! Remember, two lines are perpendicular if the product of their slopes equals -1. So, if you ever find yourself with one slope, simply take the negative reciprocal to discover the slope of the perpendicular line. Second additional information: This equation is already in slope-intercept form, which is fantastic for quickly determining the line's slope and y-intercept! You can easily graph it by starting at the y-intercept (0,8) and rising 1 unit up for every 2 units you move to the right. It’s a fun way to see how one line can set the stage for another!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad