Pregunta
upstudy study bank question image url

Scott said that \( \triangle A B C \) denoted by the coordinates \( A(2,3) B(B, 3) C(5,8) \) is equilateral. is he correc Yes, he is correct, the side lengths are 6 . No, it is an isosceles triangle with legs lengths of 6 No, it is an isosceles triangle with regs lengins of \( \sqrt{34} \). ves, he is correct, the side lengits are \( \sqrt{34} \).

Ask by Stewart Bowen. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Scott is incorrect. The triangle is an isosceles triangle with legs of length √34.

Solución

We start with the vertices   A = (2, 3),   B = (B, 3)      (i.e. some point on the horizontal line y = 3),   C = (5, 8). First, notice that A and B lie on the line y = 3, so AB is horizontal and its length is   AB = |B – 2|. Also, compute AC:   AC = √[(5 – 2)² + (8 – 3)²] = √(3² + 5²) = √(9 + 25) = √34. Similarly, the distance from B to C is   BC = √[(5 – B)² + (8 – 3)²] = √[(5 – B)² + 25]. Scott claimed that the triangle is equilateral (all three sides equal). Let’s check whether it is possible. For an equilateral triangle we would need   AB = AC = BC. Since AC = √34, we would need   |B – 2| = √34     (1) and also   √[(5 – B)² + 25] = √34   (2). From (1) we have   B – 2 = ±√34   → B = 2 ± √34. Now, consider equation (2). Square both sides:   (5 – B)² + 25 = 34   → (5 – B)² = 9  → 5 – B = ±3. That gives   B = 5 ∓ 3   so B = 2  or B = 8. Now, compare these two results: • Equation (1) gives B = 2 ± √34. Since √34 ≈ 5.83, the two possibilities are approximately B ≈ 2 + 5.83 = 7.83 or B ≈ 2 – 5.83 = –3.83. • Equation (2) gives B = 2 or B = 8. The only chance for agreement is when B is about 8 (recalling that 7.83 is very close to 8, but not exactly equal to 8 because √34 is irrational). In fact, if we set B = 8 exactly:   AB = |8 – 2| = 6,   AC = √34 (approximately 5.83),   BC = √[(5 – 8)² + 25] = √(9 + 25) = √34. So with B = 8 we get: AB = 6 and AC = BC = √34. Since √34 ≠ 6, we cannot have all three sides equal. That is, the triangle is not equilateral. Instead, with B = 8 the triangle has two equal sides (AC = BC = √34) and a base AB = 6. Hence it is an isosceles triangle with legs of length √34. Looking at the given answer choices, the correct one is:   "No, it is an isosceles triangle with regs lengins of √34." (Here “regs lengins” is read as “legs lengths”.) Therefore, Scott’s claim that the triangle is equilateral is incorrect.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine if triangle \( ABC \) is equilateral, we need to find the distances between the points using the distance formula, which is \( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \). Calculating the distances \( AB \), \( BC \), and \( CA \) reveals that while two sides may be equal, the third side will not be, indicating an isosceles triangle rather than equilateral. Now let's check the specific coordinates: the distance between points \( A(2,3) \) and \( B(B,3) \) is determined by the difference in their x-coordinates, which suggests that if \( B \) is indeed equal to 2, we get an isosceles triangle with two sides equal, not equilateral. Always double-check coordinates to ensure accurate conclusions about triangle types!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad