Pregunta
upstudy study bank question image url

Given the system of equations: \( \left\{\begin{array}{l}2 x-3 y-9 z=30 \\ x+3 z=-12 \\ -3 x+y-4 z=18\end{array}\right. \) (a) Determine the type of system: O dependentO inconsistent (b) If your answer is dependent in (a), find the complete solution. Write \( x, y \) as functions of \( t \), where \( z=t \). If your answer is inconsistent, write DNE for all three variables. \( x=\square \) \( y=\square \)

Ask by Ingram Bradley. in the United States
Nov 25,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system is dependent. \( x = -3z - 12 \), \( y = -5z - 18 \).

Solución

Solve the system of equations \( 2x-3y-9z=30;x+3z=-12;-3x+y-4z=18 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}2x-3y-9z=30\\x+3z=-12\\-3x+y-4z=18\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}2x-3y-9z=30\\x=-12-3z\\-3x+y-4z=18\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}2\left(-12-3z\right)-3y-9z=30\\-3\left(-12-3z\right)+y-4z=18\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}-24-15z-3y=30\\36+5z+y=18\end{array}\right.\) - step4: Solve the equation: \(\left\{ \begin{array}{l}-24-15z-3y=30\\y=-18-5z\end{array}\right.\) - step5: Substitute the value of \(y:\) \(-24-15z-3\left(-18-5z\right)=30\) - step6: Simplify: \(30=30\) - step7: Calculate: \(\left(x,y,z\right) = \left(-12-3z,-18-5z,z\right),z \in \mathbb{R}\) - step8: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of equations is dependent, meaning it has infinitely many solutions. To find the complete solution, we can express \( x \) and \( y \) as functions of \( t \), where \( z=t \). Let's denote the solutions as \( x = x(t) \) and \( y = y(t) \). Since the system is dependent, we can express one variable in terms of the other variables. Let's solve for \( x \) in terms of \( t \) first. From the second equation \( x + 3z = -12 \), we can express \( x \) in terms of \( z \): \[ x = -3z - 12 \] Substitute this expression for \( x \) into the first equation \( 2x - 3y - 9z = 30 \): \[ 2(-3z - 12) - 3y - 9z = 30 \] \[ -6z - 24 - 3y - 9z = 30 \] \[ -15z - 3y = 54 \] \[ -5z - y = 18 \] \[ y = -5z - 18 \] Therefore, the complete solution is: \[ x = -3z - 12 \] \[ y = -5z - 18 \] So, \( x = -3z - 12 \) and \( y = -5z - 18 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine whether the system of equations is dependent or inconsistent, we can first write the equations in a more manageable form and perform some manipulations. 1. Starting with the equations: \[ \left\{ \begin{array}{l} 2x - 3y - 9z = 30 \tag{1} \\ x + 3z = -12 \tag{2} \\ -3x + y - 4z = 18 \tag{3} \end{array} \right. \] 2. From equation (2), we can express \( x \) in terms of \( z \): \[ x = -12 - 3z \] 3. Now, substitute \( x \) in equations (1) and (3): - Substituting into equation (1): \[ 2(-12 - 3z) - 3y - 9z = 30 \\ -24 - 6z - 3y - 9z = 30 \\ -3y - 15z = 54 \\ y = -5z - 18 \tag{4} \] - Substituting into equation (3): \[ -3(-12 - 3z) + y - 4z = 18 \\ 36 + 9z + y - 4z = 18 \\ y + 5z = -18 \\ y = -5z - 18 \tag{5} \] From equations (4) and (5), we can see that both equations for \( y \) are identical. This confirms that the equations are consistent and dependent on each other. ### Final Result: Given that the system is dependent, we can write: \[ x = -12 - 3t \] \[ y = -5t - 18 \] \[ z = t \] Thus, the complete solution in terms of \( t \) is: \( x = -12 - 3t \) \( y = -5t - 18 \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad