Responder
**Parabolas:**
- The coefficient \( a \) affects the direction (upward if \( a > 0 \), downward if \( a < 0 \)) and the width (narrower if \( |a| > 1 \), wider if \( |a| < 1 \)).
- The value \( p \) shifts the graph horizontally: negative values shift left, positive values shift right.
- The value \( q \) shifts the graph vertically: negative values shift down, positive values shift up.
**Hyperbolas:**
- The coefficient \( a \) affects the vertical stretch or compression and the direction (positive or negative).
- The value \( p \) shifts the graph horizontally: negative values shift left, positive values shift right.
- The value \( q \) shifts the graph vertically: negative values shift down, positive values shift up.
Solución
Let's break down the problem step by step, starting with the conclusions about the parabolas and then moving on to the hyperbolas.
### Part 1: Parabolas
The general form of a parabola is given by:
\[
f(x) = a(x + p)^2 + q
\]
Where:
- \( a \) affects the **direction** and **width** of the parabola.
- \( p \) affects the **horizontal shift** (left or right).
- \( q \) affects the **vertical shift** (up or down).
#### Analyzing Each Graph
1. **Original Graph (M):** \( y = x^2 \)
- Here, \( a = 1 \), \( p = 0 \), \( q = 0 \).
2. **Graph 1:** \( y = (x - 2)^2 \)
- \( a = 1 \), \( p = -2 \), \( q = 0 \)
- **Effect:** The graph shifts **2 units to the right**.
3. **Graph 2:** \( y = (x + 4)^2 \)
- \( a = 1 \), \( p = 4 \), \( q = 0 \)
- **Effect:** The graph shifts **4 units to the left**.
4. **Graph 3:** \( y = (x + 2)^2 + 4 \)
- \( a = 1 \), \( p = 2 \), \( q = 4 \)
- **Effect:** The graph shifts **2 units to the left** and **4 units up**.
5. **Graph 4:** \( y = -2(x - 2)^2 - 1 \)
- \( a = -2 \), \( p = -2 \), \( q = -1 \)
- **Effect:** The graph shifts **2 units to the right**, opens **downward** (due to \( a < 0 \)), and shifts **1 unit down**. The parabola is also **narrower** because \( |a| > 1 \).
### Conclusion for Parabolas
- The value of \( a \) determines the **direction** (upward if \( a > 0 \), downward if \( a < 0 \)) and the **width** (narrower if \( |a| > 1 \), wider if \( |a| < 1 \)).
- The value of \( p \) shifts the graph **horizontally**: negative values shift left, positive values shift right.
- The value of \( q \) shifts the graph **vertically**: negative values shift down, positive values shift up.
### Part 2: Hyperbolas
The general form of a hyperbola is given by:
\[
g(x) = \frac{a}{x + p} + q
\]
Where:
- \( a \) affects the **vertical stretch** or **compression**.
- \( p \) affects the **horizontal shift** (left or right).
- \( q \) affects the **vertical shift** (up or down).
#### Analyzing Each Graph
1. **Original Graph (M):** \( y = \frac{4}{x} \)
- Here, \( a = 4 \), \( p = 0 \), \( q = 0 \).
2. **Graph 1:** \( y = \frac{8}{x} \)
- \( a = 8 \), \( p = 0 \), \( q = 0 \)
- **Effect:** The graph is **stretched vertically**.
3. **Graph 2:** \( y = \frac{2}{x} \)
- \( a = 2 \), \( p = 0 \), \( q = 0 \)
- **Effect:** The graph is **compressed vertically**.
4. **Graph 3:** \( y = -\frac{4}{x} \)
- \( a = -4 \), \( p = 0 \), \( q = 0 \)
- **Effect:** The graph is reflected across the x-axis and stretched vertically.
#### Second Graph Paper
1. **Graph 1:** \( y = \frac{4}{x} + 2 \)
- \( a = 4 \), \( p = 0 \), \( q = 2 \)
- **Effect:** The graph shifts **2 units up**.
2. **Graph 2:** \( y = \frac{4}{x} - 1 \)
- \( a = 4 \), \( p = 0 \), \( q = -1 \)
- **Effect:** The graph shifts **1 unit down**.
3. **Graph 3:** \( y = \frac{8}{x} + 2 \)
- \( a = 8 \), \( p = 0 \), \( q = 2 \)
- **Effect:** The graph is **stretched vertically** and shifts **2 units up**.
4. **Graph 4:** \( y = -\frac{8}{x} - 1 \)
- \( a = -8 \), \( p = 0 \), \( q = -1 \)
- **Effect:** The graph is reflected across the x-axis, stretched vertically, and shifts **1 unit down**.
#### Third Graph Paper
1. **Graph 1:** \( y = \frac{4}{x - 2} \)
- \( a = 4 \), \( p = -2 \), \( q = 0 \)
- **Effect:** The graph shifts **2 units to the right**.
2. **Graph 2:** \( y = \frac{4}{x + 2} \)
- \( a = 4 \), \( p = 2 \), \( q = 0 \)
- **Effect:** The graph shifts **2 units to the left**.
3. **Graph 3:** \( y = \frac{4}{x - 2} - 1 \)
- \( a = 4 \), \( p = -2 \), \( q = -1 \)
- **Effect:** The graph shifts **2 units to the right** and **1 unit down**.
4. **Graph 4:** \( y = \frac{4}{x + 2} + 2 \)
- \( a = 4 \), \( p = 2 \), \( q = 2 \)
- **Effect:** The graph shifts **2 units to the left** and **2 units up**.
### Conclusion for Hyperbolas
- The value of \( a \) affects the **vertical stretch** or **compression** and the **direction** (positive or negative).
- The value of \( p \) shifts the graph **horizontally**: negative values shift left, positive values shift right.
- The value of \( q \) shifts the graph **vertically**: negative
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución