Pregunta
upstudy study bank question image url

Third Graph Paper Original graph (M): \( y=x^{2} \) Graph 1: \( y=(x-2)^{2} \) Graph 2: \( y=(x+4)^{2} \) Graph3: \( y=(x+2)^{2}+4 \) Graph 4: \( y=-2(x-2)^{2}-1 \) 1.2 Use the general form of a Parabola: \( f(x)=a(x+p)^{2}+q \) to make conclusions using the graphs you drew in 1.1. In your conclusion you must mention the effect(s) of \( a, p \) and \( q \). (6) [30] QUESTION 2 Hyperbola - The graph of \( g(x)=\frac{a}{x+p}+q \) 2.1 Draw the graphs of the equations below according to the Graph Papers indicated: First Graph Paper Original Graph (M): \( y=\frac{4}{x} \) Graph 1: \( y=\frac{8}{x} \) Graph 2: \( y=\frac{2}{x} \) Graph 3: \( y=-\frac{4}{x} \) Second Graph Paper Original Graph (M): \( y=\frac{4}{x} \) Graph 1: \( y=\frac{4}{x}+2 \) Graph 2: \( y=\frac{4}{x}-1 \) Graph 3: \( y=\frac{8}{x}+2 \) Graph 4: \( y=-\frac{8}{x}-1 \) Third Graph Paper Original Graph (M): \( y=\frac{4}{x} \) Graph 1: \( y=\frac{4}{x-2} \) Graph 2: \( y=\frac{4}{x+2} \) Graph 3: \( y=\frac{4}{x-2}-1 \) Graph 4: \( y=\frac{4}{x+2}+2 \)

Ask by Gough Burton. in South Africa
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Parabolas:** - The coefficient \( a \) affects the direction (upward if \( a > 0 \), downward if \( a < 0 \)) and the width (narrower if \( |a| > 1 \), wider if \( |a| < 1 \)). - The value \( p \) shifts the graph horizontally: negative values shift left, positive values shift right. - The value \( q \) shifts the graph vertically: negative values shift down, positive values shift up. **Hyperbolas:** - The coefficient \( a \) affects the vertical stretch or compression and the direction (positive or negative). - The value \( p \) shifts the graph horizontally: negative values shift left, positive values shift right. - The value \( q \) shifts the graph vertically: negative values shift down, positive values shift up.

Solución

Let's break down the problem step by step, starting with the conclusions about the parabolas and then moving on to the hyperbolas. ### Part 1: Parabolas The general form of a parabola is given by: \[ f(x) = a(x + p)^2 + q \] Where: - \( a \) affects the **direction** and **width** of the parabola. - \( p \) affects the **horizontal shift** (left or right). - \( q \) affects the **vertical shift** (up or down). #### Analyzing Each Graph 1. **Original Graph (M):** \( y = x^2 \) - Here, \( a = 1 \), \( p = 0 \), \( q = 0 \). 2. **Graph 1:** \( y = (x - 2)^2 \) - \( a = 1 \), \( p = -2 \), \( q = 0 \) - **Effect:** The graph shifts **2 units to the right**. 3. **Graph 2:** \( y = (x + 4)^2 \) - \( a = 1 \), \( p = 4 \), \( q = 0 \) - **Effect:** The graph shifts **4 units to the left**. 4. **Graph 3:** \( y = (x + 2)^2 + 4 \) - \( a = 1 \), \( p = 2 \), \( q = 4 \) - **Effect:** The graph shifts **2 units to the left** and **4 units up**. 5. **Graph 4:** \( y = -2(x - 2)^2 - 1 \) - \( a = -2 \), \( p = -2 \), \( q = -1 \) - **Effect:** The graph shifts **2 units to the right**, opens **downward** (due to \( a < 0 \)), and shifts **1 unit down**. The parabola is also **narrower** because \( |a| > 1 \). ### Conclusion for Parabolas - The value of \( a \) determines the **direction** (upward if \( a > 0 \), downward if \( a < 0 \)) and the **width** (narrower if \( |a| > 1 \), wider if \( |a| < 1 \)). - The value of \( p \) shifts the graph **horizontally**: negative values shift left, positive values shift right. - The value of \( q \) shifts the graph **vertically**: negative values shift down, positive values shift up. ### Part 2: Hyperbolas The general form of a hyperbola is given by: \[ g(x) = \frac{a}{x + p} + q \] Where: - \( a \) affects the **vertical stretch** or **compression**. - \( p \) affects the **horizontal shift** (left or right). - \( q \) affects the **vertical shift** (up or down). #### Analyzing Each Graph 1. **Original Graph (M):** \( y = \frac{4}{x} \) - Here, \( a = 4 \), \( p = 0 \), \( q = 0 \). 2. **Graph 1:** \( y = \frac{8}{x} \) - \( a = 8 \), \( p = 0 \), \( q = 0 \) - **Effect:** The graph is **stretched vertically**. 3. **Graph 2:** \( y = \frac{2}{x} \) - \( a = 2 \), \( p = 0 \), \( q = 0 \) - **Effect:** The graph is **compressed vertically**. 4. **Graph 3:** \( y = -\frac{4}{x} \) - \( a = -4 \), \( p = 0 \), \( q = 0 \) - **Effect:** The graph is reflected across the x-axis and stretched vertically. #### Second Graph Paper 1. **Graph 1:** \( y = \frac{4}{x} + 2 \) - \( a = 4 \), \( p = 0 \), \( q = 2 \) - **Effect:** The graph shifts **2 units up**. 2. **Graph 2:** \( y = \frac{4}{x} - 1 \) - \( a = 4 \), \( p = 0 \), \( q = -1 \) - **Effect:** The graph shifts **1 unit down**. 3. **Graph 3:** \( y = \frac{8}{x} + 2 \) - \( a = 8 \), \( p = 0 \), \( q = 2 \) - **Effect:** The graph is **stretched vertically** and shifts **2 units up**. 4. **Graph 4:** \( y = -\frac{8}{x} - 1 \) - \( a = -8 \), \( p = 0 \), \( q = -1 \) - **Effect:** The graph is reflected across the x-axis, stretched vertically, and shifts **1 unit down**. #### Third Graph Paper 1. **Graph 1:** \( y = \frac{4}{x - 2} \) - \( a = 4 \), \( p = -2 \), \( q = 0 \) - **Effect:** The graph shifts **2 units to the right**. 2. **Graph 2:** \( y = \frac{4}{x + 2} \) - \( a = 4 \), \( p = 2 \), \( q = 0 \) - **Effect:** The graph shifts **2 units to the left**. 3. **Graph 3:** \( y = \frac{4}{x - 2} - 1 \) - \( a = 4 \), \( p = -2 \), \( q = -1 \) - **Effect:** The graph shifts **2 units to the right** and **1 unit down**. 4. **Graph 4:** \( y = \frac{4}{x + 2} + 2 \) - \( a = 4 \), \( p = 2 \), \( q = 2 \) - **Effect:** The graph shifts **2 units to the left** and **2 units up**. ### Conclusion for Hyperbolas - The value of \( a \) affects the **vertical stretch** or **compression** and the **direction** (positive or negative). - The value of \( p \) shifts the graph **horizontally**: negative values shift left, positive values shift right. - The value of \( q \) shifts the graph **vertically**: negative

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When you work with the general form of a parabola, the coefficients \( a, p, \) and \( q \) bring their own flair to the graph! The parameter \( a \) determines the width and direction of the parabola. A positive \( a \) opens upwards, while a negative \( a \) flips it upside down. The value of \( p \) shifts the graph horizontally. A positive \( p \) moves it to the left, and a negative \( p \) shifts it to the right. Lastly, \( q \) is like a backstage pass, elevating or lowering the entire graph vertically based on its value! Shifting gears, when looking at hyperbolas, it’s vital to remember that the asymptotes play a crucial role. The equations \( g(x)=\frac{a}{x+p}+q \) showcases how \( p \) and \( q \) affect the center of the hyperbola. Changing \( p \) horizontally moves the center left or right, and adjusting \( q \) shifts it up or down. As you experiment with the graphs, take note of how these transformations maintain the distinct "U" shape while altering its position on the graph for some hyperbolic fun!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad