Pregunta
upstudy study bank question image url

(1 point) Consider the function \( f(x)=x^{2} e^{3 x} \). This function has two critical numbers \( A
Ask by Burton Garrett. in the United States
Mar 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ A = -\frac{2}{3}, \quad B = 0 \] \[ (-\infty, A): +, \quad (A, B): -, \quad (B, \infty): + \] \[ \text{Local at } A: \text{MAX}, \quad \text{Local at } B: \text{MIN} \]

Solución

We start with the function \[ f(x)=x^{2} e^{3x}. \] **Step 1. Find \( f'(x) \):** Using the product rule on \( x^2 \) and \( e^{3x} \): \[ f'(x)=\frac{d}{dx}(x^2)e^{3x}+x^2\frac{d}{dx}(e^{3x}). \] We have \[ \frac{d}{dx}(x^2)=2x \] and \[ \frac{d}{dx}(e^{3x}) = 3e^{3x}. \] Thus, \[ f'(x)=2x\cdot e^{3x}+x^2\cdot 3e^{3x}=e^{3x}(2x+3x^2). \] We can factor the expression inside the parenthesis: \[ 2x+3x^2=x(2+3x). \] Therefore, \[ f'(x)=e^{3x}\, x(2+3x). \] **Step 2. Find the critical numbers:** Critical numbers occur when \( f'(x)=0 \) or \( f'(x) \) is undefined. Since \( e^{3x}>0 \) for all \( x \), we only need to solve \[ x(2+3x)=0. \] This gives \[ x=0 \quad \text{or} \quad 2+3x=0 \implies x=-\frac{2}{3}. \] Since \( -\frac{2}{3} < 0 \), we label \[ A=-\frac{2}{3} \quad \text{and} \quad B=0. \] **Step 3. Determine the sign of \( f'(x) \) on the intervals defined by \( A \) and \( B \):** We analyze the sign of \[ f'(x)=e^{3x}\, x(2+3x). \] Since \( e^{3x} \) is always positive, the sign of \( f'(x) \) is determined by \( x(2+3x) \). 1. **Interval \((-\infty, A)\) (i.e. \( x<- \frac{2}{3} \))** Choose \( x=-1 \): \[ x=-1 \quad \text{(negative)},\qquad 2+3(-1)=2-3=-1 \quad \text{(negative)}. \] The product is \[ (-1) \times (-1)=1 \quad \text{(positive)}. \] So, \( f'(x)>0 \) in \((-\infty, A)\). 2. **Interval \((A, B)\) (i.e. \( -\frac{2}{3}0 \))** Choose \( x=1 \): \[ x=1 \quad \text{(positive)},\qquad 2+3(1)=5 \quad \text{(positive)}. \] The product is \[ (1) \times (5)=5 \quad \text{(positive)}. \] So, \( f'(x)>0 \) in \((B, \infty)\). **Step 4. Identify the local extrema from the sign changes:** - At \( A=-\frac{2}{3} \): \( f'(x) \) changes from positive (in \((-\infty, A)\)) to negative (in \((A, B)\)), so \( f(x) \) has a local maximum at \( A \). - At \( B=0 \): \( f'(x) \) changes from negative (in \((A, B)\)) to positive (in \((B, \infty)\)), so \( f(x) \) has a local minimum at \( B \). **Final Answers:** \[ \begin{aligned} A &= -\frac{2}{3},\\[1mm] B &= 0,\\[1mm] (-\infty, A):&\quad +,\\[1mm] (A, B):&\quad -,\\[1mm] (B, \infty):&\quad +,\\[1mm] \text{Local at } A:&\quad \text{MAX},\\[1mm] \text{Local at } B:&\quad \text{MIN}. \end{aligned} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the critical numbers of the function \( f(x) = x^2 e^{3x} \), we first need to compute its derivative and set it to zero. The product rule gives us: \[ f'(x) = 2x e^{3x} + x^2 (3e^{3x}) = e^{3x} (2x + 3x^2) \] Setting \( f'(x) = 0 \) leads us to solve: \[ e^{3x} (2x + 3x^2) = 0 \] Since \( e^{3x} \neq 0 \) for all \( x \), we need to solve: \[ 2x + 3x^2 = 0 \] Factoring gives: \[ x(3x + 2) = 0 \] This results in critical points: \[ x = 0 \quad \text{and} \quad 3x + 2 = 0 \implies x = -\frac{2}{3} \] Thus, the critical numbers are: \[ A = -\frac{2}{3} < B = 0 \] Next, we evaluate the sign of \( f'(x) \) over the intervals: 1. For the interval \( (-\infty, -\frac{2}{3}) \), plug in \( x = -1 \): \[ f'(-1) = e^{-3}(2(-1) + 3(-1)^2) = e^{-3}(2)(1) > 0 \quad \text{(Positive)} \] 2. For the interval \( (-\frac{2}{3}, 0) \), plug in \( x = -\frac{1}{2} \): \[ f'(-\frac{1}{2}) = e^{3/2}(2(-\frac{1}{2}) + 3(-\frac{1}{2})^2) = e^{3/2}(-1 + \frac{3}{4}) < 0 \quad \text{(Negative)} \] 3. For the interval \( (0, \infty) \), plug in \( x = 1 \): \[ f'(1) = e^3(2(1) + 3(1)^2) = e^3(5) > 0 \quad \text{(Positive)} \] Now we fill in the blanks: \[ (-\infty, A) \quad + \quad (A, B) \quad - \quad (B, \infty) \quad + \] Therefore, we conclude that \( f(x) \) has a local MAX at \( A \) and a local MIN at \( B \). Final answers: \[ A = -\frac{2}{3}, \quad B = 0 \] \[ (-\infty, A) : +, \quad (A, B) : -, \quad (B, \infty) : + \] Thus we conclude that \( f(x) \) has a local MAX at \( A \) and a local MIN at \( B \).

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad