Use factoring to solve the quadratic equation. Check by substitution or by using a graphing utility and \( 5 x^{2}=38 x+16 \) The solution set is (Use commas to separate answers as needed. Type each solution only once.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To solve the equation \( 5 x^{2} = 38 x + 16 \), first rearrange it into standard form: \[ 5x^2 - 38x - 16 = 0. \] Next, factor the quadratic. To do this effectively, we need two numbers that multiply to \( 5 \times -16 = -80 \) and add up to \(-38\). Those numbers are \(-40\) and \(2\). Rewrite the quadratic: \[ 5x^2 - 40x + 2x - 16 = 0. \] Now, factor by grouping: \[ 5x(x - 8) + 2(x - 8) = 0 \] Factor out the common term \((x - 8)\): \[ (5x + 2)(x - 8) = 0. \] Set each factor to zero: 1. \( 5x + 2 = 0 \) ⟹ \( 5x = -2 \) ⟹ \( x = -\frac{2}{5} \) 2. \( x - 8 = 0 \) ⟹ \( x = 8 \) Thus, the solution set is: \(-\frac{2}{5}, 8\) Now, let's check by substitution: 1. For \( x = -\frac{2}{5} \): \[ 5(-\frac{2}{5})^2 = 38(-\frac{2}{5}) + 16, \] \[ 5 \times \frac{4}{25} = -\frac{76}{5} + 16, \] \[ \frac{4}{5} = -\frac{76}{5} + \frac{80}{5} = \frac{4}{5} \] (True) 2. For \( x = 8 \): \[ 5(8^2) = 38(8) + 16, \] \[ 5 \times 64 = 304 + 16, \] \[ 320 = 320 \] (True) Both solutions are accurate!
