Pregunta
upstudy study bank question image url

A "flush" in poker is having all the same suit of cards in your poker hand. Remember that a standard deck of cards has 52 cards of four suits: clubs, diamonds, hearts, and spades. Each suit has 13 cards in it. What is the probability that you will be dealt 5 cards of the same suit, resulting in a flush? Express your answer as a decimal rounded to four decimal places. Provide your answer below: \[ P \approx \]

Ask by Gibson Marsh. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of being dealt a flush is approximately 0.0020.

Solución

To find the probability of being dealt a flush (five cards of the same suit) in poker, we follow these steps: 1. Calculate the total number of possible 5-card hands from a standard 52-card deck:   Total hands = C(52, 5) = 2,598,960. 2. Calculate the number of flush hands. For each suit (clubs, diamonds, hearts, spades), there are:   Flush hands per suit = C(13, 5) = 1,287.   Since there are 4 suits, the total flush hands = 4 × 1,287 = 5,148. 3. The probability (P) is then:   P = (Number of flush hands) / (Total hands) = 5,148 / 2,598,960 ≈ 0.0019807923. 4. Rounding to four decimal places gives:   P ≈ 0.0020. Thus, the probability is:   P ≈ 0.0020.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability of being dealt a flush in poker, we can use combinatorics. First, there are 4 suits to choose from. For each suit, we need to choose 5 cards out of the 13 available in that suit. The number of ways to choose 5 cards from 13 is given by the combination formula \(\binom{n}{k} = \frac{n!}{k!(n-k)!}\). Thus, the number of ways to choose 5 from 13 is: \[ \binom{13}{5} = \frac{13!}{5!(13-5)!} = \frac{13 \times 12 \times 11 \times 10 \times 9}{5 \times 4 \times 3 \times 2 \times 1} = 1287. \] Since there are 4 suits, the total number of ways to get a flush is: \[ 4 \times 1287 = 5148. \] Now, we need to calculate the total number of ways to choose any 5 cards from a standard deck of 52 cards: \[ \binom{52}{5} = \frac{52!}{5!(52-5)!} = \frac{52 \times 51 \times 50 \times 49 \times 48}{5 \times 4 \times 3 \times 2 \times 1} = 2598960. \] Now, the probability \(P\) of getting a flush is the number of flush combinations divided by the total number of combinations: \[ P = \frac{5148}{2598960} \approx 0.001980. \] Rounding to four decimal places: \[ P \approx 0.0020. \]

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad